QUASI-PROJECTIVE AND QUASI-LIFTABLE CHARACTERS

W. WILLEMS AND A.E. ZALESSKI

Abstract We study ordinary characters of a finite group G which vanish on the p-singular elements for a fixed prime p dividing the order of G. Such characters are called quasi-projective. We show that all quasi-projective characters of G are characters of projective modules if and only if the ordinary irreducible characters of G can be ordered in such a way that the top square fragment of the decomposition matrix is diagonal. Finally, we prove that the number of indecomposable quasi-projective characters of G is finite and characterize them in case of blocks with cyclic defect groups.

1. Introduction

Throughout this paper let p always be a prime and let G be a finite group. The order of G is denoted by |G|, and $|G|_p$ stands for the p-part of |G|. For $n, m \in \mathbb{N}$ the notation $n \mid m$ means that n divides m. By $\mathrm{Irr}(G)$ we denote the set of classical irreducible characters of G and by $\mathrm{IBr}_p(G)$ that of irreducible p-Brauer characters with respect to a splitting p-modular system. We write Φ_{φ} for the ordinary character associated to the projective cover of the module corresponding to $\varphi \in \mathrm{IBr}_p(G)$. If χ is an ordinary character of G then χ° denotes the restriction of χ on the set of p-regular elements. Furthermore (\cdot,\cdot) stands for the usual scalar product on the complex vector space of ordinary characters and $(\cdot,\cdot)^{\circ}$ means its restriction to the set of p-regular elements.

Definition 1.1. An ordinary character Λ of G is called quasi-projective if

$$\Lambda = \sum_{\varphi \in \mathrm{IBr}_{\mathrm{p}}(\mathrm{G})} a_{\varphi} \Phi_{\varphi} \ \ \textit{with} \ \ a_{\varphi} \in \mathbb{Z}.$$

In case $a_{\varphi} \geq 0$ for all $\varphi \in IBr_p(G)$ we call Λ projective, i.e., Λ is the ordinary character of a projective module.

Note that a character Λ is quasi-projective if and only if Λ vanishes on the set of p-singular elements of G (see [14, Theorem 2.13 and Corollary 2.17]). This shows that the coefficients a_{φ} are automatically integers since $a_{\varphi} = (\Lambda, \varphi)^{\circ} = (\Lambda, \varphi)$ and φ is an integer linear combination of ordinary irreducible characters restricted to p-regular elements (see [14, Corollary 2.16]). Although quasi-projective characters are a natural generalization of characters of projective modules, they did not attract much attention so far. In [15] the authors study quasi-projective characters of degree $|G|_p$, but only for Chevalley groups in defining characteristic p.

Definition 1.2. We call a p-Brauer character φ quasi-liftable if there exists an ordinary character χ such that $\chi^{\circ} = b\varphi$ with $b \in \mathbb{N}$.

Quasi-liftable irreducible Brauer characters φ for which b>1 are of interest since they allow non-split self-extensions. More precisely, suppose that $\chi^\circ=b\varphi$ with b>1. Let V be the module in characteristic p affording φ . According to a result of Thompson ([6, Ch. I, Theorem 17.12]) there is a lattice affording χ whose Brauer reduction mod p is indecomposable. This implies in particular that there is an indecomposable module which is an extension of V by V, i.e., $\operatorname{Ext}^1_G(V,V)\neq 0$. One says that V has a self-extension. Surprisingly, for most Chevalley groups in defining characteristic p>3 even liftable modules have self-extensions [16, Proposition 1.4]. As shown in [2] the self-extension phenomenon is very rare.

Quasi-liftable irreducible Brauer characters which are not liftable are hard to find, but they exist. Take for instance $G = 2.M_{12}.2$, where M_{12} is the Mathieu group, and p = 2. Then there exists a non-liftable Brauer character $\varphi \in \mathrm{IBr}_2(G)$ of degree 44 and a $\chi \in \mathrm{Irr}(G)$ of degree 88 such that $\chi^\circ = 2\varphi$ (see decomposition matrices in [13]). Another example is provided by G = ON.2 again for p = 2. In this case there exists a $\chi \in \mathrm{Irr}(G)$ of degree 51832 with $\chi^\circ = 2\varphi$ where $\varphi \in \mathrm{IBr}_2(G)$ is not liftable.

These examples may suggest that $p \mid b$ if $\chi^{\circ} = b\varphi$ for $\varphi \in \mathrm{IBr_p}(G)$ and b > 1. However this is not true. The group $G = {}^2F_4(2)'.2$ contains a non-liftable $\varphi \in \mathrm{IBr_2}(G)$ of degree 26 and characters $\chi, \psi \in \mathrm{Irr}(G)$ with $\chi^{\circ} = 2\varphi$ and $\psi^{\circ} = 3\varphi$. The principal 2-block contains the trivial Brauer character (which is liftable), φ (which is quasi-liftable, but not liftable) and a non-quasi-liftable irreducible Brauer character of degree 246.

By the above examples one might be tempted to conjecture that the existence of quasiliftable, but not liftable irreducible p-Brauer character occurs only for p=2. This is not the case.

Example 1.3. Let p=3 and let $H=3.A_6 \times E_{27}$ where E_{27} is an elementary abelian group of order 27. The centers $Z(3.A_6)$ and $Z(E_{27})$ are generated by elements of order 3, say z and z' respectively. The group $3.A_6$ has an irreducible 3-Brauer character φ which is liftable, say to χ . For E_{27} we can choose an irreducible complex character ψ of degree 3 such that (z, z') is in the kernel of $\chi \psi \in Irr(H)$. Thus $\chi \psi$ is an irreducible character of degree 27 of

$$G = 3.A_6 \times E_{27}/\langle (z, z') \rangle \cong 3.A_6 \times E_{27}$$

which is a central product. Clearly $(\chi \psi)^{\circ} = 3\varphi$ and φ is not liftable.

If G is p-solvable then every quasi-projective character is the character of a projective module [4, Theorem 32.17]) or [14, Lemma 10.16]. It is well known that every irreducible p-Brauer character of a p-solvable group is liftable to an ordinary character. The following result which we prove in section 2 generalizes this.

Theorem 1.4. Let G be a finite group and let p be a prime. Then the following are equivalent:

- a) Every quasi-projective character $\Lambda = \sum_{\varphi \in \mathrm{IBr}_p(G)} a_\varphi \Phi_\varphi$ of G is projective.
- b) Every $\varphi \in \mathrm{IBr}_p(G)$ is quasi-liftable.

We would like to mention here that the statement in b) is equivalent to the fact that the ordinary irreducible characters of G can be ordered in such a way that the top square fragment of the decomposition matrix is diagonal. Furthermore, the proof of Theorem 1.4 together with [6, Ch. IV, Lemma 3.14] shows that there is a blockwise version of Theorem 1.4.

The groups for which all irreducible p-Brauer characters are liftable have been studied extensively by Hiss in [8] and [7]. Unfortunately, a full classification is still not available. So we can not expect a classification of all groups for which all irreducible p-Brauer characters are quasi-liftable, even if we assume that this holds true for all primes p.

For a fixed prime p the class of finite groups for which all irreducible p-Brauer characters are quasi-liftable may be bigger than that for which all irreducible p-Brauer characters are liftable. Take for instance p=2. Then all irreducible 2-Brauer characters of $2.M_{12}.2$ are quasi-liftable but not all are liftable.

However, in section 3 we show

Theorem 1.5. If G is a finite quasi-simple group then the following are equivalent:

- a) For all primes p every $\varphi \in \mathrm{IBr}_p(G)$ is quasi-liftable.
- b) G = SL(2,5).
- c) For all primes p every $\varphi \in \mathrm{IBr}_p(G)$ is liftable.

Thus one is naturally tempted to ask:

Question 1.6. Let G be an arbitrary finite group. Are the following equivalent?

- a) For all primes p every $\varphi \in \mathrm{IBr}_p(G)$ is quasi-liftable.
- b) For all primes p every $\varphi \in \mathrm{IBr}_p(G)$ is liftable.

In the last section we prove that for a finite group the number of indecomposable quasiprojective characters as defined in section 2 is finite. In the case of a block with cyclic defect group we characterize the indecomposable quasi-projective characters explicitly.

2. Quasi-projective and quasi-liftable characters

We call a quasi-projective character χ decomposable if χ is the sum of at least two non-zero quasi-projective characters. Otherwise χ is called *indecomposable*. Note that the set of irreducible ordinary characters allows a partition into p-blocks and an arbitrary character belongs to such a block, say B, if all its irreducible constituents belong to B.

Lemma 2.1. An indecomposable quasi-projective character belongs to a block.

Proof. This follows from [6, Ch. IV, Lemma 3.14].

Lemma 2.2. If Λ is a quasi-projective character then either Λ belongs to a block of defect zero or Λ has at least two different irreducible constituents.

Proof. Suppose that all irreducible constituents of Λ are equal. Hence $\Lambda = n\chi$ for some $n \in \mathbb{N}$ and $\chi \in Irr(G)$. In particular, χ vanishes on the set of p-singular elements. Thus χ is also quasi-projective. In particular, $|G|_p |\chi(1)|$ since $|G|_p |\Phi_{\varphi}(1)$ for all $\varphi \in IBr_p(G)$, by

[10, Ch. VII, Corollary 7.16]. As χ is irreducible it belongs to a p-block of defect 0, by [14, Theorem 3.18].

The following example shows that the conclusion of Lemma 2.2 can not be improved and that the decomposition of a quasi-projective character into a sum of indecomposable quasi-projective characters is not unique.

Example 2.3. Let $G = A_5$ be the alternating group on 5 letters and let p = 2. Let φ and λ be the two irreducible 2-Brauer characters of G and let χ, ψ, ρ are the irreducible ordinary characters of degree 3, 3 and 5 respectively. If we order the ordinary characters as $1, \chi, \psi, \rho$ and the Brauer characters as $1, \varphi, \lambda$ we may suppose that the decomposition matrix has shape

$$\left(\begin{array}{ccc}
1 & . & . \\
1 & 1 & . \\
1 & . & 1 \\
1 & 1 & 1
\end{array}\right).$$

From this we get the decompositions

$$\Phi_1 = (\Phi_1 - \Phi_{\varphi}) + \Phi_{\varphi}
= (\Phi_1 - \Phi_{\lambda}) + \Phi_{\lambda}$$

with quasi-projective summands

$$\begin{split} \Phi_1 - \Phi_{\varphi} &= 1 + \psi \\ \Phi_1 - \Phi_{\lambda} &= 1 + \chi \\ \Phi_{\varphi} &= \chi + \rho \\ \Phi_{\lambda} &= \psi + \rho. \end{split}$$

All these factors belong to the principal 2-block. Furthermore, they are indecomposable quasi-projective, for if not, then we would obtain an irreducible quasi-projective character, which would belong to a 2-block of defect zero (see proof of Lemma 2.2) This contradicts the fact that it lies in the principal 2-block.

The next lemma slightly generalizes [14, Lemma 10.16].

Lemma 2.4. Let $\Lambda = \sum_{\varphi \in \mathrm{IBr}_p(G)} a_{\varphi} \Phi_{\varphi}$ be a quasi-projective character of G. If φ is quasi-liftable, then $a_{\varphi} \geq 0$.

In particular, if all φ 's with $a_{\varphi} \neq 0$ are quasi-liftable then Λ is projective.

Proof. By assumption, there exists $\chi \in \operatorname{Irr}(G)$ such that $\chi^{\circ} = b\varphi$ for $b \in \mathbb{N}$. Clearly, the character $\Psi = b\Lambda = \sum_{\varphi \in \operatorname{IBr}_{p}(G)} ba_{\varphi} \Phi_{\varphi}$ is quasi-projective. Furthermore, $ba_{\varphi} = (\Psi, \varphi)^{\circ}$ by [14, Theorem 2.13]. It follows that

$$ba_{\varphi} = (\Psi, \varphi)^{\circ} = (b\Lambda, \varphi)^{\circ} = (\Lambda, \chi) \ge 0,$$

hence $a_{\varphi} \geq 0$.

Lemma 2.5. If there exists a $\varphi \in \mathrm{IBr}_p(G)$ which is not quasi-liftable then there exists a quasi-projective character of G (in the same p-block as φ) which is not projective.

Proof. Suppose that φ is not quasi-liftable. Thus, for each $\chi \in Irr(G)$ with $d_{\chi,\varphi} \neq 0$ there exists a $\psi \in IBr_p(G)$ such that $\varphi \neq \psi$ and $d_{\chi,\psi} \neq 0$.

Let $b = \max\{d_{\chi,\varphi} \mid \chi \in \operatorname{Irr}(G)\}$. We consider $\Phi = -\Phi_{\varphi} + b \cdot \sum_{\psi \neq \varphi} \Phi_{\psi}$, where the sum is running over all $\psi \in \operatorname{IBr}_p(G)$ different from φ . The multiplicity of every $\chi \in \operatorname{Irr}(G)$ in Φ is given by

$$-d_{\chi,\varphi} + b \cdot \sum_{\varphi \neq \psi \in \mathrm{IBr}_{\mathrm{p}}(\mathrm{G})} d_{\chi,\psi} \ge 0,$$

since there is a $\psi \in \mathrm{IBr}_p(G)$ with $\varphi \neq \psi$ and $d_{\chi,\psi} \geq 1$. This shows that Φ is a non-projective character. In case φ lies in the p-block B we take in the sum defining Φ only those ψ which lie in B.

The last two lemmata prove Theorem 1.4. Together with Lemma 2.1 we see that the Theorem allows a block version as well.

3. Groups with cyclic Sylow p-subgroups

By [6, Ch. VII, Lemma 5.7], all decomposition numbers of a p-block B with a cyclic defect group are 1 or 0. This implies that every quasi-liftable p-Brauer character of B is liftable.

We have the following result of a general nature. For the definition and facts of Brauer trees the reader is referred to [1, Ch. V, section 17], [6, Ch. VII].

Lemma 3.1. Let B be a p-block of G of positive defect with cyclic defect group and let Γ be the Brauer tree of B. Then the following are equivalent:

- a) Every quasi-projective character of B is projective.
- b) Every irreducible p-Brauer character of B is liftable.
- c) Γ is a star with rays all of length 1.

Proof. The equivalence of a) and b) follows from Theorem 1.4 and the above mentioned fact that every quasi-liftable p-Brauer character in B is liftable. Clearly, c) implies b). Finally, suppose that b) holds true, but Γ is not given as in c). Then Γ contains a line with at least 4 points and the irreducible p-Brauer character in the middle of the line is not liftable.

Proposition 3.2. (Hiss, see [9]) Let $G \ncong PSL(2,q)$ be a non-abelian simple group. Then there is a prime p dividing |G| such that a Sylow p-subgroup of G is cyclic and the p-Brauer tree of the principal p-block of G is not a star.

In Hiss' result the prime p may be chosen such that it does not divide the order of the Schur multiplier of G. Thus Proposition 3.2 has an obvious extension to quasi-simple groups G with $G/Z(G) \ncong PSL(2, q)$.

Lemma 3.3. (Srinivasan, see [11, Section 16.10, Theorem]) All p-modular decomposition numbers of $SL(2, p^r)$ are 0 or 1.

Corollary 3.4. Every quasi-liftable $\varphi \in \mathrm{IBr}_p(SL(2,p^r))$ is liftable.

Note that in Theorem 1.5 the assertions b) and c) are equivalent, by Hiss' thesis [7]. It is easy to check that part b) implies a). Thus the following Corollary completes the proof of Theorem 1.5.

Corollary 3.5. Let G be a quasi-simple group. Suppose that for every prime p all irreducible p-Brauer characters are quasi-liftable. Then $G \cong SL(2,5)$.

Proof. If for some prime p a Brauer tree of G is not a star then there is a $\varphi \in \mathrm{IBr_p}(G)$ which is not quasi-liftable. Thus, according to the remark below Proposition 3.2 we get $G/Z(G) \cong PSL(2,q)$ for some q.

First we consider the case G = SL(2, q):

We have to consider all primes p dividing |SL(2,q)|. For $p \mid q$ the quasi-liftable irreducible p-Brauer characters are liftable, by Lemma 3.4. Thus G has an irreducible complex character of degree 2 which means that G is a subgroup of $GL(2,\mathbb{C})$. By [5, Part A, Theorem 26.1], the group SL(2,5) is the only non-solvable finite subgroup of $GL(2,\mathbb{C})$. Finally note that for all primes p dividing |SL(2,5)| all irreducible p-Brauer characters are liftable.

Next we look at the simple groups PSL(2, q):

According to Burkhard [3] and Corollary 3.4 all irreducible p-Brauer characters are liftable for all primes p since they are quasi-liftable by assumption. Thus we get $\varphi(1) \mid |G|$ for all $\varphi \in \mathrm{IBr}_p(G)$. In particular, G belongs to the class $\tilde{\mathcal{D}}$ in the notation of Hiss [8]. Thus, by [8, Theorem 4.1], the group G is isomorphic to $PSL(2, 2^e) = SL(2, 2^e)$ for some $e \geq 2$ or to $PSL(2, 3^e)$ for $2 \leq e \leq 4$. Note that we dealt already with $SL(2, 2^e)$. The latter three cases are ruled out by [13].

Finally, the remaining two groups $3.A_6$ and $6.A_6$ also do not satisfy the assumptions of the Corollary (see again [13]).

4. Indecomposable quasi-projective characters

Let Iqp(G), Iqp(B) denote the set of indecomposable quasi-projective characters of G resp. of a block B with respect to the prime p.

Theorem 4.1. Iqp(G) is finite.

Proof. Suppose there exists an infinite sequence $\Lambda_1, \Lambda_2, \ldots$ of different indecomposable quasi-projective characters. If $Irr(G) = \{\chi_1, \ldots, \chi_n\}$ we may write

$$\Lambda_i = \sum_{j=1}^n m_{ij} \chi_j \quad (m_{ij} \in \mathbb{N}_0).$$

We define $J \subseteq N = \{1, ..., n\}$ by $J = \{j \in N \mid \{m_{ij} \mid i = 1, 2, ...\}$ is finite}. Note that J is a proper subset of N since the sequence $\Lambda_1, \Lambda_2, ...$ is infinite. Now we replace the sequence $\Lambda_1, \Lambda_2, ...$ by an infinite subsequence such that |J| is maximal. We denote this subsequence again by $\Lambda_1, \Lambda_2, ...$ Observe that J does not change whenever we take an infinite subsequence of $\Lambda_1, \Lambda_2, ...$

Next we write

$$\Lambda_i = \sum_{j \in J} m_{ij} \chi_j + \sum_{j \in N \setminus J \neq \emptyset} m_{ij} \chi_j.$$

If we put

$$\Lambda_i|_J = \sum_{j \in J} m_{ij} \chi_j$$

then we can choose an infinite subsequence of $\Lambda_1, \Lambda_2, \ldots$ which we denote again by $\Lambda_1, \Lambda_2, \ldots$ such that

$$\Lambda_i|_J = \Lambda_1|_J$$
 for all $i = 1, 2, \dots$

Hence

$$\Lambda_i = \Lambda_1|_J + \sum_{j \in N \setminus J} m_{ij} \chi_j$$
 for $i = 1, 2, \dots$

Now we fix

$$\Lambda_1 = \Lambda_1|_J + \sum_{j \in N \setminus J} m_j \chi_j$$

where $m_j = m_{1j}$ and denote Λ_1 by Λ'_1 .

Let $N \setminus J = \{j_1, \dots, j_l\}$. In a first step we can find an infinite subsequence of $\Lambda_1, \Lambda_2, \dots$ which we denote again by $\Lambda_1, \Lambda_2, \dots$ such that

$$m_{ij_1} > m_{j_1}$$
 for all i .

Taking again an infinite subsequence we get

$$m_{ij_2} > m_{j_2}$$
 for all i .

Inductively we end up with an infinite sequence $\Lambda_1, \Lambda_2, \ldots$ such that

$$m_{ij_k} > m_{j_k}$$
 for all i and $k = 1, \ldots, l$.

By construction $\Lambda_i - \Lambda'_1$ is a quasi-projective character for all i which contradicts the fact that Λ_i is indecomposable.

Question 4.2. Can one characterize $|\operatorname{Iqp}(G)|$ in terms of invariants of G or at least give a concrete upper bound?

Lemma 4.3. For a p-block B we always have $|\operatorname{Iqp}(B)| \ge |\operatorname{IBr}_{p}(B)|$.

Proof. Suppose that $Iqp(B) = \{\Lambda_1, \dots, \Lambda_r\}$ has size r. Since for $\varphi \in IBr(B)$ each Φ_{φ} is a sum of indecomposable quasi-projective characters $\Lambda_1, \dots, \Lambda_r$ generate the complex vector space of class functions generated by $\{\Phi_{\varphi} \mid \varphi \in IBr_p(B)\}$. But this space has dimension $|IBr_p(B)|$ according to [14, Theorem 2.13].

Lemma 4.4. If all irreducible characters of a p-block B are quasi-liftable then $|\operatorname{Iqp}(B)| = |\operatorname{IBr}_p(B)|$.

Proof. This is obvious since all quasi-projective characters of B are projective. Hence $Iqp(B) = \{\Phi_{\varphi} \mid \varphi \in IBr_p(B)\}.$

The next example shows that the converse of the above lemma is not true in general.

Example 4.5. Let $G = A_7$ and let B_0 denote the principal 3-block of G. According to (decomposition matrices in [13]) the decomposition matrix is given by

$$\left(\begin{array}{ccccc}
1 & . & . & . \\
. & 1 & . & . \\
. & . & 1 & . \\
1 & . & . & 1 \\
1 & . & . & 1 \\
2 & 1 & 1 & 1
\end{array}\right).$$

Clearly, the characters Φ_2 , Φ_3 , Φ_4 and $\Phi_1 - \Phi_4$ are indecomposable quasi-projective since all of them have at most three irreducible characters. We show that these are all indecomposable quasi-projective characters. Suppose that Λ is indecomposable quasi-projective, but not projective. Thus

$$\Lambda = a_1 \Phi_1 + a_2 \Phi_2 + a_3 \Phi_3 - a_4 \Phi_4$$

with $a_i \geq 0$ for all i and $a_4 > 0$. Since Λ is a character we get $a_1 \geq a_4$. Thus

$$\Lambda = (a_1 \Phi_1 - a_4 \Phi_4) + a_2 \Phi_2 + a_3 \Phi_3$$

and Λ indecomposable forces $a_2=a_3=0$. Finally $a_1=a_4=1$ since otherwise Λ is decomposable.

Question 4.6. Can one characterize blocks B with $|\operatorname{Iqp}(B)| = |\operatorname{IBr}_{p}(B)|$?

Theorem 4.7. Let B be a p-block of positive defect with a cyclic defect group. By χ_0 we denote the sum of exceptional irreducible characters of B (if such characters exist). Furthermore let $Irr^0(B)$ be the set consisting of χ_0 and all the non-exceptional irreducible characters of B. Then

$$\Lambda = \sum_{\varphi \in \mathrm{IBr}_{\mathrm{p}}(\mathrm{B})} a_{\varphi} \Phi_{\varphi}$$

is an indecomposable quasi-projective character of B if and only if $\Lambda = \chi + \psi$ for $\chi, \psi \in \operatorname{Irr}^0(B)$ where the distance between χ and ψ in the Brauer tree is odd.

Proof. In the following we use several times the fact that $\Phi_{\varphi} = \chi + \psi$ for $\chi, \psi \in \operatorname{Irr}^{0}(B)$ where χ and ψ have distance 1 in the Brauer tree (see [6, Ch. VII, Theorem 2.19]).

We write $\Lambda = \sum_{\chi \in \operatorname{Irr}^0(B)} b_{\chi} \chi$ and assume that Λ is indecomposable quasi-projective. Let $d(\cdot,\cdot)$ denote the distance in the Brauer tree. Furthermore, let $\chi, \psi \in \operatorname{Irr}^0(G)$ with $d(\chi,\psi) = d$ odd and $b_{\chi} \neq 0 \neq b_{\psi}$. We consider the path from χ to ψ which is by definition of length d, and unique. Associated to this path, say

$$\chi = \eta_1, \eta_2, \dots, \eta_{d+1} = \psi,$$

there are p-Brauer characters

$$\varphi_1,\ldots,\varphi_d$$

where φ_i is contained in the constant reduction of η_i and η_{i+1} We obtain from this the quasi-projective character

$$\Psi = \Phi_{\varphi_1} - \Phi_{\varphi_2} + \ldots - \Phi_{\varphi_{d-1}} + \Phi_{\varphi_d} = \chi + \psi.$$

Hence $\Lambda = \Psi$ since Λ is indecomposable and we are done.

Thus we have the following. Either $\Lambda = \chi + \psi$ and the distance between χ and ψ is odd or $\Lambda = \sum_{\chi \in \operatorname{Irr}^0(B)} b_{\chi} \chi$ where $b_{\chi} \neq 0 \neq b_{\psi}$ if and only if the path between χ and ψ is of even length.

Next we show that the latter case does not occur. If $g \in G$ is p-singular then

$$0 = \Phi_{\varphi_i}(g) = \eta_i(g) + \eta_{i+1}(g), \tag{*}$$

hence $\eta_i(g) = -\eta_{i+1}(g) = c_q$.

We have to deal with the case that the distance between two characters of $\operatorname{Irr}^{\circ}(B)$ is even whenever they occur in Λ . If $\chi \in \operatorname{Irr}(B)$ then there is a p-singular $g \in G$ with $\chi(g) = c \neq 0$ since χ is not of p-defect zero. The same holds true for χ_0 . This can be seen as follows. There exists a $\varphi \in \operatorname{IBr}_p(G)$ with $a_{\varphi} \neq 0$ and $\Phi_{\varphi} = \psi + \chi_0$ where $\psi \in \operatorname{Irr}(B)$. If $\chi_0(g) = 0$ for all p-singular elements $g \in G$ then the same holds true for the irreducible character ψ . This implies that ψ is of p-defect zero, a contradiction.

Now we fix some $\chi \in \operatorname{Irr}^0(B)$ which occurs in Λ . Let ψ be any other character in Λ which is irreducible or χ_0 . Since the distance between χ and ψ is even we get $\chi(g) = \psi(g) = c$ according to (*). Thus $\Lambda(g) = nc \neq 0$ where $n = \sum_{\chi \in \operatorname{Irr}^0(B)} b_{\chi}$, a contradiction.

Thus we have proved that $\Lambda = \chi + \psi$ for $\chi, \psi \in \operatorname{Irr}^0(B)$ with $d(\chi, \psi)$ odd if Λ is indecomposable quasi-projective. Conversely any character $\Lambda = \chi + \psi$ with $\chi, \psi \in \operatorname{Irr}^0(B)$ and $d(\chi, \psi)$ odd is quasi-projective according to (*). Moreover it is indecomposable. This is obvious if χ and ψ are irreducible characters. Thus suppose that $\chi = \chi_0$ and $\Lambda = \Lambda_1 + \Lambda_2$ with $\Lambda_i \neq 0$ and quasi-projective. In this case we may suppose that Λ_1 is the sum of some exceptional irreducible characters and Λ_2 contains ψ . Since a projective character contains all exceptional characters or none we see that $\Lambda_1 = \chi_0$. This implies that $\Lambda_2 = \psi$ is of p-defect zero, a contradiction.

Theorem 4.7 shows that the ordinary characters of all projective indecomposable modules (so-called PIM characters) are indecomposable quasi-projective. Thus we may ask:

Question 4.8. Can one characterize all groups for which every PIM character is indecomposable quasi-projective? Note that such a classification must include all groups in which every quasi-projective character is projective.

Apart from blocks with cyclic defect groups there are other non-trivial examples for which a complete classification of indecomposable quasi-projective characters is achievable. For the following the reader is referred to [12, section 28].

Let $G = \operatorname{GL}(2,q)$ where the prime p divides q. For $\zeta \in \operatorname{Irr}(Z(G))$ we denote by $R_1(\zeta)$, $R_{q-1}(\zeta)$ and $R_{q+1}(\zeta)$ the sets $\chi \in \operatorname{Irr}(G)$ of degree 1, q-1 and q+1, respectively, such that $\chi|_{Z(G)} = \chi(1)\zeta$. Let $z \in Z(G)$ and $1 \neq u \in U$, where U is a Sylow p-subgroup of G. Note that $C_G(u) = Z(G)U$. Using the character table of G, one observes that $\chi(u) = 1$ if $\chi \in R_1(\zeta) \cup R_{q+1}(\zeta)$, and $\chi(u) = -1$ if $\chi \in R_{q-1}(\zeta)$. Furthermore, the p-singular elements are conjugate to elements of shape zu where $z \in Z(G)$ and $1 \neq u \in U$. Therefore, $\chi(zu) = \zeta(z)\chi(u)$. It follows that $\chi(zu) = \zeta(z)$ if $\chi \in R_1(\zeta) \cup R_{q+1}(\zeta)$, and $\chi(zu) = -\zeta(z)$ if $\chi \in R_{q-1}(\zeta)$. Thus $\tau + \sigma$ is quasi-projective whenever one of the following holds:

Г

- (1) $\tau \in R_1(\zeta)$ and $\sigma \in R_{q-1}(\zeta)$ or conversely,
- (2) $\tau \in R_{q-1}(\zeta)$ and $\sigma \in R_{q+1}(\zeta)$ or conversely.

Finally note that the characters $\tau + \sigma$ with property (1) or (2) are even indecomposable quasi-projective. All irreducible characters of G which do not belong to some $R_i(\zeta)$ are of defect zero and degree q.

Proposition 4.9. Every indecomposable quasi-projective character of G = GL(2,q) with $p \mid q$ is either irreducible of degree q, or as in (1), or as in (2).

Proof. Let $\Lambda = \sum_{\chi \in \operatorname{Irr}(G)} a_{\chi} \chi$ be an indecomposable quasi-projective character of G. We know (Lemma 2.1) that all χ with $a_{\chi} \neq 0$ belong to the same block. This implies that all these characters belong to $R_1(\zeta) \cup R_{q-1}(\zeta) \cup R_{q+1}(\zeta)$ for the same (fixed) ζ . Clearly, we may assume that no constituent χ is of degree q. The minimality of Λ implies that no pair of characters satisfying (1) or (2) can occur in this decomposition, otherwise we are done. Furthermore, $\Lambda(u) \neq 0$ for every p-element $u \in G$ if all irreducible characters χ with $a_{\chi} \neq 0$ belong to the same $R_i(\zeta)$. Since no χ in Λ with $a_{\chi} \neq 0$ can belong to $R_{q-1}(\zeta)$ (otherwise Λ has a summand of type (1) or (2) and we are done), all χ occurring in Λ are in $R_1(\zeta) \cup R_{q+1}(\zeta)$. This implies that $\Lambda(u) > 0$ for all p-elements $u \in G$, a contradiction.

Acknowledgement. We are deeply indepted to an anonymous referee for many useful comments and suggestions. They caused a substancial improvement of the first version.

References

- [1] J. Alperin, Local representation theory, Cambridge Press, Cambridge 1986.
- [2] Ch.P. Bendel, D. Nakano and C. Pillen, Extentions for finite groups of Lie type: twisted groups. In: Finite groups 2003, 29-46, de Gruyter 2004.
- [3] R. Burkhardt, Die Zerlegungsmatrizen der Gruppen $PSL(2, p^f)$, J. Algebra 40 (1976), 75 96.
- [4] C. W. Curtis, I. Reiner, Methods of representation theory with applications to finite groups and orders, Vol. 1, Wiley, New York e.a., 1981.
- [5] L. Dornhoff, Group representation theory, part A, B, Dekker, New York 1972.
- [6] W. Feit, The representation theory of finite groups, North-Holland, Amsterdam, 1982.
- [7] G. Hiss, Über Liftbarkeit modularer Darstellungen endlicher Gruppen, Dissertation, Freiburg, 1983.
- [8] G. Hiss, Groups whose Brauer characters are liftable, J. Algebra 94 (1985), 388 405.
- [9] G. Hiss, A converse to the Fong-Swan-Isaacs theorem, J. Algebra 111 (1987), 279-290.
- [10] B. Huppert and N. Blackburn, Finite groups II, Springer-Verlag, Berlin, 1982.
- [11] J. Humphreys, Modular representations of finite groups of Lie type, Cambridge Univ. Press, Cambridge, 2006.
- [12] G. James and M.Liebeck, Representations and characters of groups, Cambridge Press, Cambridge 2001.
- [13] http://www.math.rwth-aachen.de/homes/MOC/
- [14] G. Navarro, Characters and blocks of finite groups, Cambridge Univ. Press, Cambridge, 1998 (LMS Lecture note Series 250).
- [15] M. Pelegrini and A. Zalesski, On characters of Chevalley groups vanishing at the non-semisimple elements, ArXiv 1304.5086, 2013.
- [16] Pham Huu Tiep and A. Zalesski, Mod p reducibility of unramified representations of finite groups of Lie type. Proc. London Math. Soc. (3) 84 (2002), 439 472.

Wolfgang Willems Otto-von-Guericke University, Magdeburg, Germany and Universidad del Norte, Barranquilla, Colombia Alexander Zalesski National Academy of Sciences of Belarus, Minsk, Belarus and University of East Anglia, Norwich, UK