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Abstract. Based on results in finite geometry we prove the existence of MRD

codes in (Fq)n,n with minimum distance n which are essentially different from
Gabidulin codes. The construction results from algebraic structures which are

closely related to those of finite fields. Some of the results may be known to
experts, but to our knowledge have never been pointed out explicitly in the

literature.

1. Introduction

Let Fq denote a finite field with q elements and let V = (Fq)m,n be the Fq-vector
space of matrices over Fq of type (m,n). On V we define the so-called rank metric
distance by

d(A,B) = rank(A−B)

for A,B ∈ V . Clearly, the distance d is a translation invariant metric on V . A
subset C ⊆ V endowed with the metric d is called a rank metric code with minimum
distance

d(C) = min {d(A,B) | A 6= B ∈ V }.
For m ≥ n, an MRD (maximum rank distance) code C ⊆ V satisfies the following
two conditions:
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(i) |C| = qkm and
(ii) d(C) = n− k + 1.

Note that an MRD code is a rank metric code which is maximal in size given the
minimum distance, or in other words it achieves the Singleton bound for the rank
metric distance (see [4, 6]).

Delsarte was the first who proved in [4] the existence of linear MRD codes for all
q,m, n and 1 ≤ k ≤ n. His construction (in the notation of Gabidulin [6]) runs
as follows: Let a1, . . . , an ∈ Fqm be linearly independent over Fq and let C be the
Fqm-linear code defined by the generator matrix

G =


a1 . . . an
aq1 . . . aqn
... . . .

...

aq
k−1

1 . . . aq
k−1

n

 ,

where 1 ≤ k ≤ n. Each code word c ∈ C is a vector in (Fqm)n. If we choose a fixed
basis of Fqm over Fq then c may be regarded as a matrix in V = (Fq)m,n. Thus we
obtain an Fq-linear code C in V . The code C, which is usually called a Gabidulin
code (although first discovered by Delsarte), is an Fq-linear MRD code of size qkm

with minimum distance d = n − k + 1. At this point we may naturally ask: Is
there any other MRD code which is essentially different from a Gabidulin code, i.e.,
which does not allow an isometry to a Gabidulin code.

Definition 1. a) A bijective map ϕ : (Fq)m,n −→ (Fq)m,n is called an isometry if
ϕ preserves the rank metric distance, i.e.,

d(A,B) = d(ϕ(A), ϕ(B))

for all A,B ∈ (Fq)m,n.
b) Two codes C and C′ in (Fq)m,n are equivalent if there exists an isometry ϕ with
ϕ(C) = C′. If one of the codes is additively closed resp. an Fq-vector space, we
require in addition that ϕ is additive resp. Fq-linear.

In odd characteristic, already in the 1950s of the last century L.-K. Hua has
classified all bijective maps ϕ from (Fq)m,n onto itself such that ϕ and ϕ−1 preserve
the distance between adjacent matrices, i.e., between all pairs of matrices A,B with
rankA−B = 1 In even characteristic, this has been done by Z.-X. Wan in the 1960s.
For isometries the result can be stated as follows (see Theorem 3.4 in [17]):

Theorem 1. (Hua, Wan) If ϕ is an isometry of (Fq)m,n with m,n ≥ 2, then there
exist matrices X ∈ GL(m, q), Y ∈ GL(n, q) and Z ∈ (Fq)m,n such that

ϕ(A) = XAσY + Z for all A ∈ (Fq)m,n
where σ is an automorphism of the field Fq acting on the entries of A,
or, but only in case m = n,

ϕ(A) = X(At)σY + Z for all A ∈ (Fq)n,n
where At denotes the transpose of A.
If ϕ is additive, then obviously Z = 0. In addition σ = id in case ϕ is Fq-linear.

In the recent paper [14] Morrison has rediscovered Hua’s result in case that ϕ is
linear resp. semi-linear.
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Note that up to equivalence in the above sense Gabidulin codes only depend on
q,m, n and k, but not on the chosen vector (a1, . . . , an) ∈ Fnqm .

If we specialize the Gabidulin construction to k = 1 and m = n, then a Gabidulin
code G is a linear code of dimension n such that A−B is always regular for A 6= B
in G. In particular, all 0 6= A ∈ G are regular since the zero matrix is in G. If G is
defined by (a1, . . . , an) ∈ Fnqn and we choose a1, . . . , an as an Fq-basis B of Fqn then

G = 〈S〉 ∪ {0}

where 〈S〉 denotes the group generated by a Singer cycle S in GL(n, q) which is the
matrix defining the multiplication by a primitive element in Fqn with respect to the
basis B. Finally, observe that 〈S〉 ∪ {0} is isomorphic to the field Fqn where the
addition and multiplication are the standard ones in the ring of square matrices.
In this special case we may already ask whether there are linear MRD codes which
are not isomorphic to finite fields.

In what follows we do not insist that everything is new. Many facts may have
been proved earlier or are at least folklore in the community of specialists on fi-
nite quasifields/semifields/division algebras. However the link between rank metric
codes with special parameters and quasifields/semifields/division algebras does not
seem to have been pointed out in the existing literature so far.

2. On the structure of MRD codes with k = 1 and n = m

In this section we connect MRD codes in case k = 1 and m = n with well-known
objects in finite geometry. Recall that an MRD code C in (Fq)n,n of minimum
distance n is a maximal set of matrices such that det(A−B) 6= 0 for all A 6= B in C.
Replacing C by the translate C−B = {A−B | A ∈ C} for some fixed B ∈ C we may
assume that the zero matrix is an element of C. Hence all matrices in C different
from zero are invertible. Replacing C by B−1C for some B 6= 0 in C we may further
assume that the identity matrix I is an element in C. So far we have changed C by
a rank metric distance preserving isometry which is not linear if 0 6∈ C.

Furthermore, since |C| = qn and detA 6= 0 for all 0 6= A ∈ C we see that C \ {0}
acts regularly on the non-zero vectors of W = Fnq , i.e. C \ {0} acts transitively
without fixed points on the non-zero vectors of W . In particular, if we fix a vector
0 6= w0 ∈ W , then for any w ∈ W there exists exactly one A(w) ∈ C such that
w0A(w) = w. In the following we always take w0 = e1 = (1, 0, . . . , 0). Thus the
first row of A(w) is equal to w. In particular, we may write

(1) C = {A(w) | w ∈W},

where A(0) = 0 and A(e1) = I. The latter follows by the fact that there is a w ∈W
with A(w) = I and det(A(e1)−A(w)) = 0 since the first row of A(e1) and A(w) = I
coincide.

In finite geometry, such a system of linear maps is called a spreadset in W (see
[5, 8]), or a spreadset over Fq. Note that conversely a spreadset in (Fq)n,n defines
an MRD code C in (Fq)n,n with minimum distance n. Spreadsets in W give rise to
a multiplication ◦ on W defined by

(2) w ◦ w′ = wA(w′)

for w,w′ ∈W .
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With this multiplication and the standard vector addition W carries the structure
of a quasifield ([5], section 5.1) which is defined as follows.

Definition 2. a) A set Q with two operations +, ◦ : Q×Q −→ Q is called a (right)
quasifield if the following holds.

(i) (Q,+) is an abelian group with neutral element 0 which satisfies 0◦a = 0 = a◦0
for all a ∈ Q.

(ii) There is an identity e in Q such that e ◦ a = a ◦ e = a for all a ∈ Q.
(iii) For all a, b ∈ Q with a 6= 0 there exists exactly one x ∈ Q such that a ◦ x = b.
(iv) For all a, b, c ∈ Q with a 6= b there exists exactly one x ∈ Q such that

x ◦ a = x ◦ b+ c.
(v) (a+ b) ◦ c = a ◦ c+ b ◦ c for all a, b, c ∈ Q (right distributivity).

b) We call

KerQ = {c ∈ Q | c ◦ (a+ b) = c ◦ a+ c ◦ b, c ◦ (a ◦ b) = (c ◦ a) ◦ b for all a, b ∈ Q}
the kernel of the quasifield Q.
c) A quasifield Q which satisfies also the left distributivity law is called a semifield
S. If S is not a field, we say that S is a proper semifield.
d) A quasifield with associative multiplication is called a nearfield. In particular,
the non-zero elements of a nearfield form a group with respect to ◦.

Definition 3. Let S be a semifield.
a) The left, middle and right nucleus of S are defined as follows:

Nl = Nl(S) = {x ∈ S | x ◦ (a ◦ b) = (x ◦ a) ◦ b for all a, b ∈ S}
Nm = Nm(S) = {x ∈ S | a ◦ (x ◦ b) = (a ◦ x) ◦ b for all a, b ∈ S}
Nr = Nr(S) = {x ∈ S | a ◦ (b ◦ x) = (a ◦ b) ◦ x for all a, b ∈ S}.

Note that the left nucleus of S is just the kernel of S considered as a quasifield.
b) The center Z(S) of S is the set

Z(S) = {a ∈ Nl ∩Nm ∩Nr | x ◦ a = a ◦ x for all x ∈ S}.

For applications in coding theory we may assume and will do so for the rest of
this paper that the quasifields, semifields resp. nearfields are always finite.

Remark 1. Quasifields are strongly related to translation planes in finite geometry,
i.e., translation planes are precisely those affine planes which can be coordinatized
by quasifields [5]. Unfortunately, there is no satisfactory classification of finite
quasifields. In contrast, for finite semifields there is a vast literature [12, 10, 3, 13, 9].
Proper finite semifields exist exactly for all orders pn ≥ 16 where p is a prime and
n ≥ 3 [12]. Furthermore, finite nearfields have been classified by Zassenhaus in [18].

To continue we recall the following well-known facts which are easy to see.

Lemma 1. a) If Q is a finite quasifield, then KerQ is a finite field.
b) Q is a finite dimensional left vector space over KerQ.
c) If S is a finite semifield, then S is a division algebra over its center Z(S).

Now let Q be a finite quasifield and let K be a subfield of KerQ. According to
Lemma 1 we have dimK Q = n for some n ∈ N. For a ∈ Q we consider the map
x 7→ x ◦ a on Q. Since

(x+ y) ◦ a = x ◦ a+ y ◦ a and (k ◦ x) ◦ a = k ◦ (x ◦ a)
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for all x, y ∈ Q and all k ∈ K there exists a unique R(a) = RK(a) ∈ GL(n,K) for
a 6= 0 and R(0) = 0 ∈ (K)n,n such that

xR(a) = x ◦ a
for all x ∈ Q. With this notation the set

C = {R(a) | a ∈ Q}
is an MRD code in (K)n,n with minimum distance n. Note that C is uniquely
determined by Q and the chosen subfield K of KerQ up to conjugation in GL(n,K).
We will always choose the identity e ∈ Q as the first basis vector in a basis of Q
over K, hence e = e1 = (1, 0, . . . , 0). Therefore, the first row in R(a) is equal to a
as a vector.

Conversely, let C = {A(w) | w ∈ W} be an MRD code in (K)n,n with minimum
distance n as in (1) and let W =W carry the structure of a quasifield defined as in
(2). We shall prove that K ∼= Ke1 is contained in KerW. To see that note that

(ke1)A(w) + (ke1)A(w′) = (ke1)(A(w) +A(w′)) = (ke1)A(w + w′)

for w,w′ ∈W and k ∈ K. Thus

ke1 ◦ w + ke1 ◦ w′ = ke1 ◦ (w + w′).

Furthermore,

(ke1 ◦w) ◦w′ = (ke1A(w))A(w′) = k((e1A(w))A(w′)) = k(w ◦w′) = ke1 ◦ (w ◦w′),
which proves the claim. Thus we have proved the following which is essentially
already stated in [2].

Theorem 2. MRD codes in (K)n,n (containing the zero and identity matrix) with
minimum distance n correspond (in the above sense) to finite quasifields Q with
K ≤ KerQ and dimK Q = n.

If we require that the codes are closed under addition, hence form abelian groups
(since they are finite), we get the following.

Theorem 3. Additively closed MRD codes in (K)n,n (containing the identity ma-
trix) with minimum distance n correspond (in the above sense) to finite semifields
S with K ≤ KerS and dimK S = n.

Proof. Suppose that S is a finite semifield with K ≤ KerS and dimK S = n. Let
C = {R(a) = RK(a) | a ∈ S}. Since S satisfies the left distributive law we have

xR(a+ b) = x ◦ (a+ b) = x ◦ a+ x ◦ b = xR(a) + xR(b) = x(R(a) +R(b))

for x, a, b ∈ S, hence R(a) +R(b) = R(a+ b).
Conversely, suppose that Q is a finite quasifield and C = {R(a) | a ∈ Q} is

additively closed. Thus, for a, b ∈ Q there exists a unique c ∈ Q such that

R(a) +R(b) = R(c).

If e is the identity in Q then

c = e ◦ c = eR(c) = e(R(a) +R(b)) = eR(a) + eR(b) = e ◦ a+ e ◦ b = a+ b.

So
R(a) +R(b) = R(a+ b)

or in other words, R is additive. Thus

x ◦ a+ x ◦ b = xR(a) + xR(b) = x(R(a) +R(b)) = xR(a+ b) = x ◦ (a+ b)
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for all x, a, b ∈ Q. This shows that Q is left distributive, hence Q is a semifield S.
The fact that K ≤ KerS and dimK S = n follows from Theorem 2.

In order to understand linearity of MRD codes over some field Fq we need the
following result.

Proposition 1. Let S be a finite semifield and K a subfield of S. The following
two conditions are equivalent:

1. S is a division algebra over K.
2. K is a subfield of Z(S).

Proof. b) =⇒ a): This follows from Lemma 1.
a) =⇒ b): Since S is a division algebral over K, we have

(3) (k ◦ a) ◦ b = k ◦ (a ◦ b) = a ◦ (k ◦ b)

for all k ∈ K and all a, b ∈ S.
The first equality implies K ≤ Nl(S). Plugging b = e into the equality (k◦a)◦b =

a ◦ (k ◦ b) we get

(4) k ◦ a = a ◦ k

for all k ∈ K and a ∈ S. Hence K ⊆ {x ∈ S | x◦a = a◦x for all a ∈ S}. It remains
to show that K ⊆ Nm ∩Nr. In order to see that note that

a ◦ (k ◦ b) = (k ◦ a) ◦ b (by (3))
= (a ◦ k) ◦ b (by (4))

for all k ∈ K and all a, b ∈ S, hence K ⊆ Nm. Furthermore,

a ◦ (b ◦ k) = a ◦ (k ◦ b) (by (4))
= k ◦ (a ◦ b) (by (3))
= (a ◦ b) ◦ k (by (4))

for all k ∈ K and all a, b ∈ S, hence K ⊆ Nr.

Theorem 4. K-linear MRD codes in (K)n,n (containing the identity matrix) with
minimum distance n correspond to finite division algebras D over K where K ≤
Z(D) and dimK D = n.

Proof. Let S be a finite semifield with K ≤ KerS and dimK S = n. Let R : S →
(K)n,n be defined as above; i.e. xR(a) = x◦a for x, a ∈ S and let C = {R(a) | a ∈ S}
be the MRD code corresponding to S. Clearly, if R is K-linear, i.e. R(k◦a) = kR(a)
for k ∈ K and a ∈ S, then C = {R(a) | a ∈ S} is a K-vector space. Conversely, if C
is a K-vector space, then R(k ◦ a) = kR(a) for k ∈ K and a ∈ S since the first row
of R(k ◦ a) and kR(a) coincide.

The condition

kR(a) = R(k ◦ a)

for all k ∈ K and all a ∈ S is equivalent to

(kx)R(a) = k(xR(a)) = x(kR(a)) = xR(k ◦ a)

for all k ∈ K and all x, a ∈ S, hence to

(k ◦ x) ◦ a = k ◦ (x ◦ a) = x ◦ (k ◦ a).

for all k ∈ K and all x, a ∈ S. The latter means exactly that S is a division algebra
over K and the condition K ≤ Z(S) follows by Lemma 1.
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According to the above theorems, division algebras, semifields, nearfields or even
quasifields deliver new methods to construct MRD codes which are different from
Gabidulin codes. Remember that for a Gabidulin code in (Fq)n,n with minimum
distance n the corresponding quasifield is a field.

3. Isotopy and equivalence

As stated in Theorem 4, K-linear MRD codes in (K)n,n with minimum distance
n correspond to finite division algebras D over K ≤ Z(D) with dimK D = n. Since
non-isomorphic division algebras may lead to equivalent codes we need the following
definition.

Definition 4. Let Q and Q′ be finite quasifields which are left vector spaces over
the same field K ≤ KerQ∩KerQ′. We say that Q′ is isotopic to Q over K if there
are K-linear isomorphisms F,G,H : Q −→ Q′ such that

aF ◦′ bG = (a ◦ b)H
for all a, b ∈ Q.

Example 1.
a) There exist exactly 23 non-isomorphic proper semifields of order 16 which crumble
away into two isotopy classes over F2 (see [12], section 6.2).
b) Using MAGMA [1] we computed exactly three equivalence classes of MRD codes
in (F2)4,4 with minimum distance 4. One of these classes represents a Gabidulin
code which is associated to the finite field F16. The other two classes are represented
as follows (without the zero matrix):

Code 2: 
1 1 1 0
0 1 0 1

1 1 0 1

0 1 0 0

,


1 0 0 0
0 1 0 0

0 0 1 0

0 0 0 1

,


1 0 1 0
1 0 0 1

1 1 0 0

0 1 1 1

,


0 1 1 0
0 0 0 1

1 1 1 1

0 1 0 1

,


1 1 0 1
1 1 1 1

0 1 1 0

1 0 0 0

,


1 0 0 1

0 0 1 1

0 1 1 1
1 0 1 1

,


0 0 1 1

1 0 1 0

1 0 1 1
1 1 0 0

,


0 0 1 0

1 1 0 1

1 1 1 0
0 1 1 0

,


0 1 0 1

1 0 1 1

0 1 0 0
1 0 0 1

,


1 1 1 1

0 0 1 0

1 0 0 0
1 1 1 0

,


1 1 0 0

1 0 0 0

0 0 1 1
0 0 1 0

,


0 1 0 0

1 1 0 0

0 0 0 1
0 0 1 1

,


1 0 1 1

1 1 1 0

1 0 0 1
1 1 0 1

,


0 0 0 1

0 1 1 1

0 1 0 1
1 0 1 0

,


0 1 1 1

0 1 1 0

1 0 1 0
1 1 1 1

 .

Code 3: 
0 1 1 1

1 1 0 0
0 1 1 0

0 1 0 0

,


1 1 1 0

1 1 0 1
1 1 0 0

1 0 1 0

,


1 0 0 0

0 1 0 0
0 0 1 0

0 0 0 1

,


1 0 0 1
0 0 0 1
1 0 1 0
1 1 1 0

,


0 1 0 0

0 0 1 0
0 0 0 1

1 1 0 0

,


1 1 0 1

0 0 1 1
1 0 1 1

0 0 1 0

,


0 1 1 0
1 0 0 1
1 1 1 0

1 0 1 1

,


0 0 1 0
1 0 1 1

1 1 1 1

0 1 1 1

,


1 0 1 0
1 1 1 1

1 1 0 1

0 1 1 0

,


1 1 0 0
0 1 1 0

0 0 1 1
1 1 0 1

,


1 0 1 1
1 0 1 0

0 1 0 1
1 0 0 1

,


0 0 0 1
0 1 0 1

1 0 0 0
1 1 1 1

,


0 1 0 1
0 1 1 1

1 0 0 1
0 0 1 1

,


1 1 1 1
1 0 0 0

0 1 0 0
0 1 0 1

,


0 0 1 0
1 1 1 0

0 1 1 1
1 0 0 0

.

The Codes 2 and 3 correspond naturally to the two non-isotopic semifields of
order 16 as the next result shows.
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Theorem 5. Let C, C′ ⊆ (K)n,n be K-linear MRD codes with minimum distance
n and corresponding division algebras D and D′. In particular K ≤ Z(D) and
K ≤ Z(D′). Then C and C′ are linearly equivalent if and only if D′ is isotopic to
D or its transpose Dt over K.

Proof. If W = Kn then C = {A(w) | w ∈ W} where e1A(w) = w for w ∈ W .
Furthermore, if D is the corresponding division algebra where D = W as a K-
vector space, then the multiplication on D is given by

w1 ◦ w2 = w1A(w2) for wi ∈W.
The transpose Dt of D is defined by Dt = W as a K-vector space but with multi-
plication w1 ◦ w2 = w1A(w2)t. We use the same notation for the second code but
with a ′ everywhere.

We first suppose that C and C′ are equivalent and prove that the corresponding
semifields are isotopic over K. Thus by assumption there exist X,Y ∈ GL(n,K)
such that

{XA(w)Y | w ∈W} = {A′(w) | w ∈W} (∗)
or

{XA(w)Y | w ∈W} = {A′(w)t | w ∈W}. (∗∗)
Suppose that (∗) holds true. This means that for each w ∈ W there exists exactly
one w̃ ∈W such that

XA(w)Y = A′(w̃).

Let F : W −→W denote the map wF = w̃. For w1, w2 ∈W we obtain

(w1 ◦ w2)Y = w1A(w2)Y = w1X
−1A′(w̃2) = w1X

−1A′(w2F ) = w1X
−1 ◦′ w2F.

Since Y −1 and X are K-linear it remains to show that F is K-linear as well.
First note that A(k1w1 + k2w2) = k1A(w1) + k2A(w2) for ki ∈ Fq and wi ∈ W

since the first row of A(w) is equal to w and C is a K-vector space. The same holds
for A′. From this we obtain

A′((k1w1 + k2w2)F ) = XA(k1w1 + k2w2)Y

= k1XA(w1)Y + k2XA(w2)Y

= k1A
′(w1F ) + k2A

′(w2F )

= A′(k1(w1F ) + k2(w2F )).

Applying the inverse of A′ we get

(k1w1 + k2w2)F = k1(w1F ) + k2(w2F )

which proves that F is K-linear. Thus the division algebras D and D′ are isotopic
over K. In case (∗∗) the proof runs similar.

Now suppose that the corresponding division algebras are isotopic over K. Thus
there are K-linear isomorphisms F,G,H : W −→W such that

(w1 ◦ w2)H = w1F ◦′ w2G

for v, w ∈W . If follows

w1A(w2)H = w1FA
′(w2G)

for all wi ∈W . This implies A(w)H = FA′(wG) for w ∈W or

F−1A(w)H = A′(wG)
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for all w ∈W . Thus

F−1CH = {F−1A(w)H | w ∈W}
= {A′(wG) | w ∈W}
= {A′(w) | w ∈W} = C′.

This shows that C and C′ are equivalent. The case that D is isotopic to the transpose
of D′ is done similarly.

Remark 2. a) The second part of the proof of Theorem 5 shows that an isotopy
between two quasifields always leads to equivalent codes.
b) We do not know what an equivalence between two additively closed MRD codes
in (K)n,n with minimum distance n means for the corresponding semifields. Note
that such an equivalence is not necessarily linear.

4. Symmetric MRD codes

Let E = Fqn and let K = Fq ≤ E. On E the standard non-degenerate symmetric
K-bilinear form 〈· , ·〉 is defined by

〈x, y〉 = trE/K(xy)

for x, y ∈ E where tr denotes the trace of E over K. If a is running over all
non-trivial elements of E we get non-degenerate symmetric K-bilinear forms of E
by

〈x, y〉a = 〈ax, y〉.

Taking the corresponding Gram matrices together with the zero matrix we obtain
a linear MRD code in (Fq)n,n with minimum distance n consisting of symmetric
matrices. This code is equivalent to a Gabidulin code which can be seen as follows.
We fix a basis x1, . . . , xn of E over K. Let yi = Bxi for i = 1, . . . , n be the dual
basis. Then the Gram matrices with respect to the basis x1, . . . , xn are of the form
AtB−1 where A runs through a Singer subgroup of GL(n, q).

According to [7], the symmetry can be used to correct (symmetric) errors beyond
the bound bd−12 c.

Definition 5. Let K be a finite field. We call a code C ⊆ (K)n,n symmetric if all
matrices A in C are symmetric, i.e., A = At for all A ∈ C.

Definition 6. Let Q be a finite quasifield over K ≤ Ker Q. A K-bilinear form
〈· , ·〉 on Q is called invariant if

〈x ◦ a, y〉 = 〈x, y ◦ a〉

for all a, x, y ∈ Q.

Lemma 2. Let Q be a finite quasifield over K ≤ Ker Q and let 〈· , ·〉 be an invariant
non-degenerate symmetric K-bilinear form on Q. For a ∈ Q we define the form
〈· , ·〉a by

〈x , y〉a = 〈x ◦ a , y〉

for x, y ∈ Q. Then, for all 0 6= a ∈ Q, the form 〈· , ·〉a is K-bilinear, non-degenerate
and symmetric.
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Proof. One easily checks that 〈· , ·〉a is K-bilinear since (x1 +x2)◦a = x1 ◦a+x2 ◦a
and (k ◦ x) ◦ a = k ◦ (x ◦ a) for all x, x1, x2, a ∈ Q and all k ∈ K.

Let G denote the Gram matrix of 〈· , ·〉 with respect to the basis as R(a) is taken
where x ◦ a = xR(a). Then 〈· , ·〉a has the Gram matrix R(a)tG which is regular for
a 6= 0. Thus 〈· , ·〉a is non-degenerate for all 0 6= a ∈ Q.

Finally, the symmetry follows by

〈x , y〉a = 〈x ◦ a , y〉
= 〈x , y ◦ a〉 (since 〈· , ·〉 is invariant)

= 〈y ◦ a , x〉 (since 〈· , ·〉 is symmetric)

= 〈y , x〉a
for all x, y, a ∈ Q.

Theorem 6. Let Q be a finite quasifield over the field K ≤ Ker Q and let C =
{R(a) | a ∈ Q} be the corresponding MRD code in (K)n,n. Then Q admits an
invariant non-degenerate symmetric K-bilinear form if and only if the equivalence
class of C contains a symmetric code.

Proof. Suppose that Q admits an invariant non-degenerate symmetric K-bilinear
form 〈· , ·〉. According to Lemma 2 the K-bilinear forms 〈· , ·〉a are non-degenerate
and symmetric for a 6= 0 with Gram matrices R(a)tG. Furthermore for a 6= b in Q,
the difference of the corresponding Gram matrices

R(a)tG−R(b)tG = (R(a)−R(b))tG

is regular. Thus {R(a)tG | a ∈ Q} is a symmetric MRD code which is equivalent
to C.

Conversely suppose that the equivalence class of C contains a symmetric code.
Thus we may assume that there are regular matrices X and Y such that {XR(a)Y |
a ∈ Q} consists of symmetric matrices. (The second type of equivalence in Theorem
1 leads to the same just by taking transpose matrices.) Since R(e) is the identity
matrix we have (XY )t = XY , hence Z = Y X−t = X−1Y t = Zt. Let 〈· , ·〉 be the
standard symmetric non-degenerate bilinear form on the K-vector space Q. Thus
the non-degenerate bilinear form 〈· , ·〉Z defined by

〈x, y〉Z = 〈x, yZ〉

is symmetric. From (XR(a)Y )t = Y tR(a)tXt = XR(a)Y we get

X−1Y tR(a)t = R(a)Y X−t,

hence ZR(a)t = R(a)Z. It follows

〈x ◦ a, y〉Z = 〈xR(a), yZ〉 = 〈x, yZR(a)t〉 = 〈x, yR(a)Z〉 = 〈x, y ◦ a〉Z
and 〈· , ·〉Z is invariant.

Remark 3. a) In finite geometry Theorem 6 can be stated as follows [11]: The
translation plane associated to a quasifield Q is symplectic if and only if Q admits
a non-degenerate invariant symmetric bilinear form.
b) According to ([11], Theorem 4.2), Q admits a non-degenerate invariant symmetric
bilinear form over KerQ if and only if the additive group generated by {(xy)z −
x(zy) | x, y, z ∈ Q} is a proper subgroup of (Q,+).
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c) Symmetric MRD codes have been explicitly constructed by Kai-Uwe Schmidt in
[16].

5. Finite nearfields

Finite nearfields have been classified by Zassenhaus (see [18], or section 5.5.2
in [5]). These are the regular quasifields, usually denoted by N(n, q), and seven
exceptional cases. The quasifields N(n, q) exist for all q and n, provided all prime
divisors of n divide q− 1 and 4 6 |n in case q ≡ 3 (mod 4). Note that N(n, q) is not
a field if n > 1, and N(1, q) = Fq. Moreover, the center of N(n, q) is Fq. If C is the
MRD code corresponding to N(n, q) for n > 1 then C∗ = C \ {0} is a nonabelian
group of order qn− 1 whereas in the class of Gabidulin codes this group is cyclic of
order qn − 1. We demonstrate one of the exceptional cases in the next example.

Example 2. Let Q be the subgroup of GL(2, 11) generated by A =

(
0 −1
1 0

)
and B =

(
2 4
1 −3

)
. One easily checks that Q ∼= SL(2, 5). Furthermore Q acts

regularly on the non-zero vectors of V (2, 11). Thus C = Q ∪ {0} is an MRD code
in (F11)2,2. The orders of elements of Q are 1, 2, 3, 4, 5, 6 and 10. Since E + A has
order 40, the rank metric code C is not additively closed.

6. MRD codes with k > 1 and n = m

Example 3. Using Magma we see that (F3)3,3 contains two equivalence classes
of linear MRD codes with minimum distance d = n − k + 1 = 2. One of them
represents the Gabidulin code G and has the following matrices as a basis. 1 0 0

0 0 0
0 1 0

 ,

 0 1 0
0 0 0
1 2 1

 ,

 0 0 1
0 0 0
0 1 2

 ,

 0 0 0
1 0 0
0 0 2

 ,

 0 0 0
0 1 0
0 2 1

 ,

 0 0 0
0 0 1
2 1 0

 .

The other class contains a code C which has the following basis. 1 0 0
0 0 0
1 1 0

 ,

 0 1 0
0 0 0
0 0 2

 ,

 0 0 1
0 0 0
2 0 2

 ,

 0 0 0
1 0 0
1 2 1

 ,

 0 0 0
0 1 0
2 2 1

 ,

 0 0 0
0 0 1
1 2 2

 .

The only semifield of order 27 has the Frobenius map x 7→ x3 in F27 as a semifield
automorphism and we may use the Gabidulin construction over the semifield to get
a rank metric code C′. However, up to equivalence we do not get the above code
since C′ contains matrices of rank 1. Note that the rank distribution of C and the
corresponding Gabidulin code coincide, consistently with Theorem 5.6 of [4]. There
are exactly 338 matrices of rank 2 and 390 of rank 3. Furthermore, if we consider
the matrices of C as vectors in F3

27 we obtain an MDS code which is not linear over
F27 in contrast to the corresponding Gabidulin code.

Nevertheless we would like to mention here that both G and C are equivalent to
their duals (see [15], Proposition 5.9). The duality is defined with respect to the
bilinear form

〈A,B〉 = tr(ABt)

for A,B ∈ (F3)3,3.
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