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Abstract

In this note we investigate extremal singly-even self-dual codes with minimal
shadow. For particular parameters we prove non-existence of such codes. By a
result of Rains [11], the length of extremal singly-even self-dual codes is bounded.
We give explicit bounds in case the shadow is minimal.

Index Terms: self-dual codes, singly-even codes, minimal shadow, bounds

1 Introduction

n

Let C be a singly-even self-dual [n, §,d] code and let Cy be its doubly-even subcode.
There are three cosets Ci,Cy,C3 of Cy such that C’Ol = Cy U C1 UCy U (3, where
C=CyuUCsy. Theset S=CLUC3 = C’OL \ C is called the shadow of C. Shadows
for self-dual codes were introduced by Conway and Sloane [5] in order to derive new
upper bounds for the minimum weight of singly-even self-dual codes and to provide
restrictions on their weight enumerators.

According to [10] the minimum weight d of a self-dual code of length n is bounded
by 4[n/24] + 4 for n # 22 (mod 24) and by 4[n/24] + 6 if n = 22 (mod 24). We call a
self-dual code meeting this bound extremal. Note that for some lengths, for instance
length 34, no extremal self-dual codes exist.

Some properties of the weight enumerator of S are given in the following theorem.

Theorem 1 [5] Let S(y) =Y .y Bry" be the weight enumerator of S. Then
e B.=DB,_, forallr,
e B, =0 unless r =n/2 (mod 4),
o By=0,
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e B. <1 forr<d/2,
o Bd/2 < 2n/d,
e at most one B, is nonzero for r < (d+4)/2.

Elkies studied in [6] the minimum weight s (respectively the minimum norm) of the
shadow of self-dual codes (respectively of unimodular lattices), especially in the cases
where it attains a high value. Bachoc and Gaborit proposed to study the parameters d
and s simultaneously [1]. They proved that 2d 4 s < § + 4, except in the case n = 22
(mod 24) where 2d + s < § +8. They called the codes attaining this bound s-extremal.
In this note we study singly-even self-dual codes for which the minimum weight of the
shadow has smallest possible value. possible.

Definition 1 We say that a self-dual code C of length 24m + 81 + 2r with r = 1,2,3
and 1 = 0,1,2 is a code with minimal shadow if wt(S) = r. Forr =0, C is called of
minimal shadow if wt(S) = 4.

Self-dual codes with minimal shadow are subject of two previous articles. The pa-
per [3] is devoted to connections between self-dual codes of length 24m + 81 + 2 with
wt(S) = 1, combinatorial designs and secret sharing schemes. The structure of these
codes are used to characterize access groups in a secret sharing scheme based on codes.
There are two types of schemes which are proposed - with one-part secret and with
two-part secret. Moreover, some of the considered codes support 1- and 2-designs. The
performance of the extremal self-dual codes of length 24m + 8] where [ = 1,2 have
been studied in [2]. In particular, different types of codes with the same parameters are
compared with regard to the decoding error probability. It turned out that for lengths
24m+-8 singly-even codes with minimal shadow perform better than doubly-even codes.
Thus from the point of view of data correction one is interested in singly-even codes
with minimal shadow.

This article is organized as follows. In Section 2 we prove that extremal self-dual
codes with minimal shadow of length 24m + 2t for t = 1, 2, 3, 5, 11 do not exist.
Moreover, for t = 4, 6, 7 and 9, we obtain upper bounds for the length. We also prove
that if extremal doubly-even self-dual codes of length n = 24m + 8 or 24m + 16 do not
exist then extremal singly-even self-dual codes with minimal shadow do not exist for
the same length. The only case for which we do not have a bound for the length is
n = 24m + 20.

All computations have been carried out with Maple.



2 Extremal self-dual codes with minimal shadow

Let C be a singly-even self-dual code of length n = 24m + 81 4+ 2r where [ = 0,1, 2 and
r =0,1,2,3. The weight enumerator of C' and its shadow are given by [5]:

12m~+4l+r 3m+l
W(y) — Z ajy2j _ Z Cl'(l + y2)12m+4l+r—4z(y2(1 - y2)2)z
7=0 1=0
6m+21 3m+l
S(y) — Z bjy4j+r — Z (_1)zci212m+4l+rf6zy12m+4l+rf4z(1 _ y4)21
7=0 =0

Using these expressions we can write ¢; as a linear combination of the a; and as a
linear combination of the b; in the following way [10]:

3mA+l—i

C; = Zaijaj = Z ﬁijbj. (1)
j=0 Jj=0

Suppose C' is an extremal singly-even self-dual code with minimal shadow, hence
d=4m+4 and wt(S) =r if r =1,2,3 and wt(S) = 4 if r = 0. Obviously in this case

ap=1,a1 =ay =+ = agms+1 = 0. According to Theorem 1, we have bg = 1if r > 0
and m > 1, and bg =0,by =1 if r =0 and m > 2.
Moreover, if » > 0 and m > 1 then by = by = -+ = b,,_1 = 0. Otherwise S would

contain a vector v of weight less than or equal to 4m — 4 + r, and if u € S is a vector
of weight r then u+v € C with wt(u+v) <4m +2r —4 < 4m + 2, a contradiction to
the minimum distance of C'. Similarly, if r =0 and m > 2 then by = --- = b,,_1 = 0.

Remark 1 For extremal self-dual codes of length 24m + 8] + 2 we furthermore have
bm = 0. Otherwise S would contain a vector v of weight 4m + 1, and if v € S is the
vector of weight 1 which exists since wt(.S) = 1, then u+v € C with wt(u+v) < 4m+2
contradicting the minimum distance of C.

If m > 2 we have by (1)

m—+l—1
Com+1 = O2mi10 = Bamite + Y Bami1bis (2)

j=m

where € = 1 for r = 0 and € = 0 otherwise, since 3m—+I[—2m—1 = m+[—1. To evaluate
this equation, which turns out to be crucial in the following, we need to consider the
coefficients ap in details. In order to do this we denote by «;(n) the coefficient a;g if
n is the length of the code. According to [10] we have

n i—1 - —n/2—1+4i —2
a;(n) = a0 = —Q—i[coeff. of ™1 in (1 +1y) /27144 (1 —y)~2]. (3)



Lett =4l +r and n = 24m + &1 + 2r = 24m + 2t. Then

12 t
a2m+1(n) — —%[coeﬁ. of y2m in (1 + y)—12m—t—1+8m+4(1 _ y)—4m—2}
12 t
= —%[ceefﬁ of y?™ in (14 y) M ~1H3(1 — y)~4m=7
For t > 5 we obtain
12 t
Qa1 (n) = —5 o feoef. of ™ i (1 y) = (1 - y)! )
and if t <5 then
12 t
aomt1(n) = —%[coeff. of y?™ in (1 — ¢*) ™4™ 2(1 4 y)571).
Since 1
(1—y*) = Z <—.a> (—1)7y% = Z (a +‘7, B >y2j for a > 0,
o< N7 0<; J
it follows in case t < 5 that
12m +t " (4 41\
Qomi1(n) = —%[eoeff. of y*™ in (1 + y)5_tjz_% < " +j] + >y27]
[25%]
__12m—|—t o—t\[/dm+1—s
 2m+1 2s m—s ’

s=0

and in case t > 5 that
12m +t T (Am At — 4\ .
aomt1(n) = —%[coeﬁ. of ™ in (1 — y)t_‘r’jz0 < me j+j )ij]
t—5
2

_ 12m+t[ : t—5\/bm+t—4—s
o 2m+1 2s m—s '
s=0
For the different lengths n the values of agy,+1(n) are listed in Table 1.

To evaluate equation (2) we also need f;; which are known due to [10]. Here we

have ki1
_(_1\ig—n/2+6iF —J (Kt —] —
g = ()i rrei ] ( - ) (4)



Table 1: The values agp,4+1(n) for extremal self-dual codes

n 24m + 2 24m + 10 24m + 18
.  (12m + 1)(56m + 4) (5m — 1 C12m+5 (5m+1 12(Tm +5)(4m +3) (5m + 3
At 2m+1)(m—1) m— 2 2m + 1 m m(m — 1) m— 2
n 24m + 4 24m + 12 24m + 20
N _2(6m+1)(8m+1) [ 5m 6 5m + 2 20(6m + 5)(4m +3) (5m + 4
et m(2m + 1) m—1 m m(m — 1) m—2
n 24m + 6 24m + 14 24m + 22
N _3(@dm+1)(6m+1) [ 5m _3(12m +7) (5m + 2 _6(12m +11)(6m +5)(8m +7) (5m + 4
et m(2m + 1) m—1 m m—1 m(m —1)(m —2) m—3
n 24m + 8 24m + 16
N ~4Bm+1) (bm+1 _16(3m +2) (5m +3
et 2m+1 m m m—1

where k = |n/8| = 3m + [. In particular,

3 l—7 5 l—7
52m+1’j:_26—tm+9< m+1l—j

d = _26—t'
2m + 1 m+l—1_j> and  Som+1,m+i-1

Now we are prepared to prove:

Theorem 2 Eztremal self-dual codes of lengths n = 24m + 2, 24m + 4, 24m + 6,
24m + 10 and 24m + 22 with minimal shadow do not exist.

Proof. According to [10] any extremal self-dual code of length 24m + 22 has minimum
distance 4m + 6 and the minimum weight of its shadow is 4m 4 7. Thus the shadow
is not minimal since a minimal shadow must have minimum weight 3. (There is a
misprint in [10] where it is stated that the minimum weight of the shadow is 4m + 6.
But actually the weights in this shadow are of type 45 + 3).

In the other four cases we have

Com4+1 = 02m+1,0 = Boam+1,0 (5)

by (2). In case n = 24m + 10 we use the fact that b,, = 0, according to Remark 1.
Simplifying equation (5) according to Table 1 we obtain
48m? +26m+1=0, ifn=24m+2
24m? +14m+1=0, ifn=24m+4
48m? +30m+3=0, ifn=24m+6
6m+3 =0, ifn=24m + 10.




Since all these equations have no solutions m > 0 extremal self-dual codes with
minimal shadow do not exist for n = 2,4, 6, 10 mod 24. O

Remark 2 So far no extremal self-dual codes of length 24m + 2¢ are known for ¢ =
1,2,3,5. According to [8] extremal self-dual codes of length 24m + 2r do not exist for
r=123and m =1,2,...,6,8,...,12,16,...,22. Thus if there is (for instance) a
self-dual [170, 85, 32] code it will not have minimal shadow, by Theorem 2.

The next result is a crucial observation in order to prove explicit bounds for the
existence of extremal singly-even self-dual codes.

Theorem 3 FExtremal singly-even self-dual codes with minimal shadow of lengths n =
24m+8, 24m~+12, 2dm+14 and 24m—+18 have uniquely determined weight enumerators.

Proof. For m = 0 and m = 1 see Remark 3 and the examples at the end of the paper.
Now let m > 2.
In case n = 24m + 12 or n = 24m + 14 we have

3m+1—i
¢ = a0 = Bio + Z Bijb; fori<2m+1 and

j=m

7
Ci = Qo + Z Qija; = Bio  for i > 2m + 1.
j=2m+2
Therefore ¢; = ayo for i =0,1,...,2m+ 1 and ¢; = Bp for i =2m +2,...,3m + 1.

In the case n = 24m + 8 we have by = 0, by =1 and by = --- = b,,_1 = 0. Hence
¢ =a;fori=0,1,....2m+1and ¢; = F;; fori =2m+2,...,3m + 1.

Similarly, if n = 24m + 18 we obtain ¢; = a;p for i = 0,1,...,2m + 1 and ¢; = Sy
for i =2m+2,...,3m + 2. In both cases the weight enumerator can be computed as
above.

By (3) and (4), the values of ¢; can be calculated and they depend only on the
length n. Thus the weight enumerators are unique in all cases. O

In [15], Zhang obtained upper bounds for the lengths of the extremal binary doubly-
even codes. He proved that extremal doubly-even codes of length n = 24m + 8! do not
exist if m > 154 (for [ = 0), m > 159 (for I = 1) and m > 164 (for [ = 2). For extremal
singly-even codes there is also a bound due to Rains [11]. Unfortunately, he only states
the existence of a bound. In the next corollary we give explicit bounds for extremal
singly-even self-dual codes with minimal shadow for lengths congruent 8, 12, 14 and 18
mod 24.



In the proof we need the value of ¢, = gm,0. According to [10] we have

(

dm+t+4+7

_ y)t+1(1 . yQ)—4m—t—1]

J

24 2t
agm(n) = —L[coeﬂi of ™ Lin (1 +4y) 4" 1711 — y)~im]
m
12 t
= —;nim—i_[coeff. of ™ in (1
12m +t <
= —%[coeﬁ. of y*™ 1 in (1 —y)t*! Z
J=0
(2]
_1mn+t§é t+1Y\ (dm+t—s
- 2m 2s -1 m-—s

s=1

)

2j]

where t = 41 4+ r and n = 24m + 81 + 2r = 24m + 2t. The values for as,(n) are listed

in Table 2.
Table 2: The values g, (n) for an extremal self-dual [n = 24m + 2t, &, 4m + 4] code
n iz (1)
o+ 8 8(4m ;(121(1_17;(—2—713)_(27)714— 1) (5?:’_+31>
e e ()
o+ 14 24(1 + 72711?7)71(1_21711) ?;n 7)_(22?(71; + gjm +5) (5:: _+43)
o+ 16 16(3m + Q)i?:ntligij(ini);’ﬁsgﬂit14(;73m +210) (5$+53>
o+ 18 120(2m + ni)(giwi —:)?;21262771)(37”—% _:%gs)szi ir i)sgm 1 42) (5:;, _+54>
o + 20 | 16(6m+5)(@m+1)(4m + 3)(1592m? + 3280m* + 2363m + 630) <5m + 4)
m(m —1)(m — 2)(m — 3)(m — 4)(m —5) m— 6

Sm+l—1—j
m4+1l—j

Im+1l—j

Furthermore, B, j = 27¢
2m

52m,m+l—1 - 21_t(2m + 1)

(

>. Hence Bom m+i1 = 2t and

Corollary 4 There are no extremal singly-even self-dual codes of length n with minimal

shadow if
(1) n=24m + 8 and m > 53,

(i) n = 24m + 12 and m > 142,



(iii) n = 24m + 14 and m > 146,
(iv) n = 24m + 18 and m > 157.

Proof. Using the equation

3m+l—i
¢i = o = Pie + Z Bijb; for i <2m+1,
j=m

where € = 1 if n = 24m + 8 and € = 0 in the other cases, we see that

binsi—1 = =27 (am41.0 — Bam1.e):

The values of by, for n = 24m + 8, 24m + 12 and 24m + 14 are given in Table 3.

Table 3: The parameter b, for extremal self-dual codes of length n

n 24m + 8 24m + 12 24m + 14

6m+1[ 5m 12m+5 [(5m+1 168m? + 164m + 39 ( 5m + 1
m m—1 2m+1 m (2m +1)(4m + 3) m

b

If n = 24m + 18 we have

24 17)(1 1 2
b, —0 and bm+1:( m~+ 17)(17m + O)<5m+ )

(2m +1)(4m + 5) m+1
In the first three cases we compute

Q2m,0 — /82m,e - BZm,mbm
/BQm,m—i-l

bm+1 -

If n = 24m + 8 we obtain

bm+1 =

16(6m + 1)(—4m? + 209m? + 141m + 24) <5m + 1)
m—1

S5m(m + 1)(4m + 3)

In case m > 53 the polynomial —4m? +209m? 4 141m + 24 takes negative values, hence
bm+1 < 0, a contradiction.
For 24m + 12 we have

; 2(12m + 5)(—32m* + 4496m3 + 4242m? + 1257m + 117) <5m + 2>
m+1 —

(5m + 1)(4m + 3)(4m + 5)(2m + 3) m+1

If m > 142 the polynomial —32m?* + 4496m?> + 4242m? 4 1257m + 117 takes negative
values, hence b,,+1 < 0, a contradiction.



For 24m + 14 the calculations lead to

. 2(—5376m® + 772352m> + 1663728m* + 1386448 m3 + 557970m? + 107643m + 7875) <5m + 2)
m+1 —

(4m + 3)(dm + 5)(2m + 3)(dm + 7) (5m + 1) m+1

which is negative if m > 146.
In the last case we have to compute

Q2m.0 — ﬁ2m,0 - B2m,m+1bm+1
BQm,erZ

bm+2 —

The computations yield

A 2(24m + 17)(—544m> + 83696m* + 184210m? + 149089m? + 52809m + 6930) (5m + 3
m2 (4m + 5)(2m + 3)(4m + 7)(4m + 9)(5m + 2) m+ 2
which is negative for m > 157. g

Proposition 5 If there are no extremal doubly-even self-dual codes of length n = 24m—+
8 or 24m + 16 then there are no extremal singly-even self-dual codes of length n with
minimal shadow.

Proof. We shall prove the contraposition. Let C' be a singly-even self-dual [n = 24m +
81,12m+ 41, 4m+ 4] code and suppose that the coset C; contains the vector u of weight
4. If v € C5 then u 4+ v € Cy and hence wt(u + v) > 4m + 6. It follows that

wt(v) > 4m + 6 — 4 4 2wt(u x v) > 4m + 4,

since (1 is not orthogonal to Cs, which means that uxv = 1 (mod 2) for u € Cy,v € Cs
(see [4]). Thus wt(Cs) > 4m + 4. Therefore Cy U C3 is an extremal doubly-even code
with parameters [24m + 81,12m + 41,4m + 4]. O

Corollary 6 There are no extremal singly-even self-dual codes with minimal shadow
of length n = 24m + 16 for m > 164.

Proof. This follows immediately from the Zhang bound [15] for doubly-even codes in
connection with Proposition 5. O

Summarizing the results in Theorem 2, Corollary 4 and Corollary 6 we have proved
either the non-existence or an explicit bound for the length n of an extremal singly-even
self-dual code unless n = 20 (mod 24). To find an explicit bound for n = 24m + 20
seems to be difficult since the weight enumerator is not unique in this case.



Remark 3 Extremal singly-even self-dual codes of length 24m + 8 are constructed
only for m =1, i.e. n = 32. There are exactly three inequivalent singly-even self-dual
[32, 16, 8] codes. Yorgov proved that there are no extremal singly-even self-dual codes
with minimal shadow of length 24m + 8 in the case m is even and (5;?) is odd [14].

Examples. Extremal singly-even self-dual codes of lengths 24m + 12, 24m + 14 and
24m 4+ 18:

m = 0: There are unique extremal singly-even codes of lengths 12, 14 and 16, and
they have minimal shadows. There are two inequivalent self-dual [18,9,4] codes, but
only one of them is a code with minimal shadow (see [5]).

m = 1: Extremal self-dual codes of lengths 36, 38 and 42 with minimal shadow are
constructed. Only for the length 36 there is a complete classification [9]. There are 16
inequivalent self-dual [36, 18, 8] codes with minimal shadow and their weight enumerator
is W =1+ 225y% + 2016y + 9555512 + - .- (see [7]).

m = 2: There exists a doubly circulant code with parameters [60, 30, 12] and shadow
of minimum weight 2, denoted by D13 in [5]. The first examples for extremal self-
dual codes with minimal shadow of lengths 62 and 66 are constructed in [12] and [13],
respectively.

Finally, we would like to mention that similar to the case of extremal doubly-even
self-dual codes there is a large gap between the bounds for extremal singly-even self-dual
codes and what we really can construct.
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