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Abstract

In this paper we prove that rank metric codes with special properties imply the

existence of q-analogs of suitable designs. More precisely, we show that the minimum

weight vectors of a [2d, d, d] dually almost MRD code C ≤ F2d
qm (2d ≤ m) which has

no code words of rank weight d + 1 form a q-Steiner system S(d − 1, d, 2d)q. This is

the q-analog of a result in classical coding theory and it may be seen as a first step to

prove a q-analog of the famous Assmus-Mattson Theorem.
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1 Introduction

The interest in q-analogs of codes and designs has been increased over the last years due

to their applications in random network coding. It is well-known that a network code C
consisting of k-dimensional subspaces of a fixed n-dimensional vector space over Fq with

minimum distance d ≥ 2(k − t + 1) has largest size |C| if and only if the codewords form

an S(t, k, n)q Steiner system, the q-analog of an S(t, k, n) Steiner system. This is one of

the reasons we are interested in the existence and construction of such systems.

Definition 1.1. Let t, k, n, λ ∈ N with t ≤ k ≤ n. A t-(n, k, λ)q subspace design D over

the field Fq is a set of k-dimensional subspaces of Fn
q , called the blocks, such that every

t-dimensional subspace of Fn
q is contained in exactly λ blocks of D. In case λ = 1, D is

called a q-Steiner system and denoted by S(t, k, n)q.

∗This work was done while J. de la Cruz was at the University of Zurich supported by the Swiss Con-

federation through the Swiss Government Excellence Scholarship no. 2016.0873. The autor was partially

supported by COLCIENCIAS through project no. 121571250178.
†J. Rosenthal was supported in part by the Swiss National Science Foundation under grant no. 169510.

1



Clearly S(k, k, n)q and S(1, n, n)q exist and these are called trivial q-Steiner systems.

Furthermore there are non-trivial q-Steiner systems S(1, k, n)q whenever k | n which are

also known as spreads [4]. Apart from these examples only S(2, 3, 13)2 is known to exist

[2]. One of the most challenging problems in this field is the question of the existence of

an S(2, 3, 7)q design, as it would have the smallest parameters of a non-trivial q-Steiner

system with t ≥ 2. It is known as a q-analog of the Fano plane and many authors have

been studying this questions so far. See e.g. [3],[17] and the references in these papers.

In this work we analyze q-analogs of Steiner systems derived from a special family of

rank metric codes called dually almost MRD codes which were defined in [7]. In Section 2

we collect some facts on rank metric codes, in particular on generalized rank weights. In

Section 3 we analyze the supports of the minimum weight vectors of a rank metric code.

Section 4 deals with a relationship between rank metric codes and subspace designs. We

prove that the minimum weight vectors of a [2d, d, d] dually almost MRD code C ≤ F2d
qm

(2d ≤ m) which has no code words of rank weight d + 1 hold an S(d − 1, d, 2d)q Steiner

system. The blocks are built by the supports of all code words of minimum weight. Note

that such a code provides

a) for d = 4 a q-analog of the Fano plane (see Lemma 4.2),

b) for n = 2d and t = d− 1 an affirmative answer of the following question which may

be seen as the q-analog of the Assmus-Mattson theorem.

Question 1.2. Let C ≤ Fn
qm be an Fqm-linear code with minimum distance d. Fix a

positive integer t with t < d and let s be the number of i with Ai(C
⊥) 6= 0 for 0 < i ≤ n−t.

Is it then true, that the supports of vectors of weight d in C form a t-(n, d, λ)q design if

s ≤ d− t?

2 Preliminaries

In this paper we study Fqm-linear codes C ≤ Fn
qm endowed with the rank metric distance.

To be more precise, note that the field Fqm may be viewed as an m-dimensional vector

space over Fq. The rank weight, or briefly the weight of a vector v = (v1, . . . , vn) ∈ Fn
qm

is defined as the maximum number of coordinates in v that are linearly independent over

Fq, i.e., wt(v) = dimFq〈v1, . . . , vn〉. For v, u ∈ Fn
qm the rank metric distance is then given

by d(v, u) = wt(u− v) = rank(v − u).

A Fqm-linear subspace C ≤ Fn
qm of dimension k endowed with this metric is called a

[n, k] Fqm-linear rank metric code. As usual the minimum distance of C 6= {0} is defined

by

d = d(C) = min{wt(c) | 0 6= c ∈ C}.

By Ai(C) we always denote the code words of C of weight i. Finally, we use the notation

C⊥ for the orthogonal of C which is taken with respect to the standard inner product of

Fn
qm .
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Throughout the paper we always assume that C ≤ Fn
qm is an Fqm-linear rank metric

code with minimum distance d. Furthermore we assume that C is not trivial, i.e., 0 6=
C 6= Fn

qm and n ≤ m. Thus, if dimC = k, then the last condition implies the Singleton

bound

d ≤ n− k + 1.

C is called a maximum rank distance code, shortly an MRD code, if the bound is achieved.

Delsarte [10] and independently Gabidulin [13] proved the existence of such codes for all

q,m, n and dimension 1 ≤ k ≤ n (here n ≤ m is not necessary). Given the parameters

q,m, n, k, the code C ≤ Fn
qm these authors describe has a particular construction through

a special generator matrix and the resulting code is usually called a Gabidulin code. Re-

cently other new constructions of MRD codes have been found which are not equivalent

to Gabidulin codes [9, 22]. Somehow surprisingly, over the algebraic closure of Fq, the set

of MRD codes forms a generic set inside the Grassmann variety of all k-dimensional linear

subspaces of Fn
qm [20]. In particular over some large finite field there exist large numbers

of MRD codes and lower bounds on these cardinalities can be found in [20].

In analogy to the Singleton defect for classical codes as given in [6, 12], we have the

following definition for the defect of rank metric codes [8].

Definition 2.1. The rank defect, briefly the defect, of an Fqm-linear [n, k, d] rank metric

code C ≤ Fn
qm is defined by def(C) = n− k + 1− d.

Note that def(C) = 0 if and only if C is an MRD code. Other interesting codes, which

are coming close to MRD codes, are the so-called dually almost MRD codes or simply

dually AMRD codes [7]. More precisely, we say that a Fqm-linear rank metric code C is

dually AMRD if def(C) = def(C⊥) = 1. Dually AMRD codes are subject of the main

results in the last section of this paper. These codes can be viewed as q-analogs of classical

almost-MDS (AMDS) codes and as in the classical situation these codes induce again some

q-Steiner system.

Let b1, . . . , bm be a basis B of Fqm over Fq. For v = (v1, . . . , vn) ∈ Fn
qm we write

vi =

m∑
j=1

αjibj

and put MB(v) = (αji) ∈ (Fq)
m×n. As mentioned in ([16], Section 2), the Fq-linear row

space of MB(v) is independent of the chosen basis B.

In order to define generalized rank weights we need the following notations [14, 16].

Definition 2.2. For v = (v1, . . . , vn) ∈ Fn
qm and an Fqm-linear subspace V of Fn

qm we

define

a) supp(v) as the Fq-linear row space of MB(v).

b) supp(V ) = 〈supp(v) | v ∈ V 〉 as an Fq-vector space.
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c) wt(V ) = dim supp(V ).

d) V ? =
∑m−1

i=0 V qi where V qi = {(v1q
i
, . . . , vn

qi) | (v1, . . . , vn) ∈ V }.

In the literature there are different definitions for generalized rank weights (see [21],[19],

[11], [16]). All of them define the same numbers. For our purpose the definition given in

[16] seems to be the most appropriate.

Definition 2.3. The r-th generalized rank weight dr of a rank metric code C ≤ Fn
qm is

defined by

dr(C) = min
D≤C

dimD=r

wt(D).

Combining results of [19],[11] and [16] we obtain the rank metric analog of Wei’s result

[23] on generalized Hamming weights.

Theorem 2.4. If C is an Fqm-linear rank metric code in Fn
qm of dimension k and minimum

distance d, then

d(C) = d1(C) < d2(C) < . . . < dk(C).

Proof. We have

dr(C) = min
D≤C

dimD=r

wt(D)

= min
D≤C

dimD=r

dimD? ([16],Corollary 4.4)

= min
D≤C

dimD=r

maxd∈D? wt(d) ([16],Theorem 5.8)

= min
V =V ?

dim(C∩V )≥r

dimV ([11],Proposition II.1)

= Mr(C) (by Definition 5 in [19])

where

Mr(C) = min {dimV | V q = V ≤ Fn
qm , dim(C ∩ V ) ≥ r}.

By ([19], Lemma 9) we get

M1(C) < . . . <Mk(C),

and the proof is complete since obviously d(C) = d1(C).

3 Supports of the minimum weight vectors

From [16] we know the following facts.

Lemma 3.1. Let C ≤ Fn
qm be an Fqm-linear rank metric code.

a) If u = αv for some α ∈ F∗qm, then supp(v) = supp(u).
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b) If v1, . . . , vk ∈ Fn
qm generate C, then

supp(C) =

k∑
i=1

supp(vi).

c) There exists an element c ∈ C such that

supp(c) = supp(C).

d) For u, v ∈ Fn
qm there exist α, β ∈ Fqm such that supp(αv+ βu) = supp(v) + supp(u).

Proof. a) and b) are part of Proposition 2.3 of [16]. c) is Proposition 3.6 and d) Proposition

3.9 of the same paper.

Definition 3.2. For an Fqm-linear rank metric code C ≤ Fn
qm of dimension k and minimum

distance d we put

Di(C) = {supp(c) | c ∈ C, wt(c) = i}

for i = 0, d, . . . , n− k + 1.

Lemma 3.3. Let C ≤ Fn
qm be an Fqm-linear rank metric code with minimum distance d.

a) Let v, u ∈ C and wt(v) = wt(u) = d. Then supp(v) = supp(u) if and only if there

exists α ∈ F?
qm such that u = αv.

b) |Dd(C)| = Ad(C)
qm−1 .

Proof. a) One direction follows by Lemma 3.1 a). Suppose supp(v) = supp(u) and v, u

linearly independent over Fqm . Let W = 〈v, u〉 as a vector space over Fqm . By Lemma 3.1

b), we get supp(W ) = supp(v) + supp(u) = supp(v). Therefore

wt(W ) = dimFq(supp(W )) = dimFq(supp(v)) = d.

Thus, according to the definition of generalized rank weights we obtain

d2(C) = min{wtR(S) | S ≤ C and dimFqm
S = 2} = d,

which contradicts Theorem 2.4.

b) This immediately follows from part a).
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4 q-analog Steiner systems and rank metric codes

Maximum distance separable (MDS) codes are [n, k, d] linear codes C ≤ Fn
q which reach

the Singleton bound d = n − k + 1. Almost-MDS (AMDS) codes were introduced by de

Boer [6] and they are characterized by the Singleton defect one, i.e. d = n− k.

In [12] it has been shown that the supports of code words of minimum weight of a

[2d, d, d] dually AMDS code (d ≥ 2) which has no code words of weight d + 1 form the

blocks of an S(d−1, d, 2d) classical Steiner system and d+1 must be a prime. For instance,

in this way the extended ternary Golay code leads to an S(5, 6, 12) Steiner system. In this

section we prove the q-analog of this result.

Definition 4.1. Let q be a prime power and let a and b be non-negative integers. The

q-ary Gaussian binomial coefficient of a over b is defined by[
a

b

]
q

=

{
(qa−1)(qa−1−1)···(qa−b+1−1)

(qb−1)(qb−1−1)···(q−1) if b ≤ a
0 if b > a

Recall that
[
a
b

]
q

is the number of b-dimensional subspaces contained in an a-dimensional

Fq-vector space and that the number of blocks of an S(t, k, n)q Steiner system is
[nt]q
[kt]q

.

In the following we freely use the symmetry of the Gaussian binomial coefficients, i.e.,[
a
b

]
q

=
[

a
a−b
]
q
.

Lemma 4.2. A Sq(t, k, n) Steiner system implies an S(t−1, k−1, n−1)q Steiner system

if t ≥ 2.

Proof. This is one part of ([18], Lemma 5).

The next Theorem as well Corollary 4.7 may be seen as q-analogs of results in [12].

Theorem 4.3. Let C ≤ F2d
qm be a [2d, d, d] dually AMRD code with d ≥ 2 and Ad+1(C) =

0. Then the set Dd(C) are the blocks of an S(d− 1, d, 2d)q Steiner system.

Proof. (i) Let W ≤ F2d
q be of dimension d−1. Suppose that W is contained in two different

blocks, i.e., elements of Dd(C). Hence

W ≤ supp(u) ∩ supp(v)

with supp(u), supp(v) ∈ Dd(C). Since dim (supp(u) ∩ supp(v)) ≤ d− 1 we obtain

W = supp(u) ∩ supp(v).

Thus

dim (supp(u) + supp(v)) = 2d− (d− 1) = d+ 1.

By Lemma 3.1 d) there are α, β ∈ Fqm such that

supp(u) + supp(v) = supp(αu+ βv).
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Thus αu + βv ∈ C has weight d + 1, a contradiction. This means that every (d − 1)-

dimensional subspace of F2d
q is contained in at most one block.

(ii) According to Lemma 3.3 b) we have |Dd(C)| = Ad(C)
qm−1 . Since Ad+1(C) = 0, Theorem

27 of [8] yields

Ad(C) =

[
2d
d+1

]
q[

d
1

]
q

(qm − 1) =

[
2d
d−1
]
q[

d
d−1
]
q

(qm − 1),

hence |Dd(C)| =
[ 2d
d−1]q
[ d
d−1]q

. Since each block contains exactly
[

d
d−1
]
q

subspaces of dimension

(d − 1) and every (d − 1)-dimensional subspace is contained in at most one block by (i),

the blocks altogether contain

|Dd(C)|
[

d

d− 1

]
q

=

[
2d

d− 1

]
q

subspaces of dimension d − 1. As
[
2d
d−1
]
q

is the number of (d − 1)-dimensional subspaces

in a space of dimension 2d, the proof is complete.

Remark 4.4. Let C ≤ F2d
qm be a [2d, d, d] dually AMRD code with d ≥ 2 and Ad+1(C) = 0.

Then C⊥ also leads to an S(d− 1, d, 2d)q Steiner system, since C is formally self-dual due

to ([7], Lemma 4.11).

Example 4.5. Let C be the F24-linear [4, 2, 2] code with generator matrix(
0 1 ω 0

1 0 0 ω

)
where ω is a primitive third root of unity in F∗24 . With Magma [1] we get A0(C) =

A0(C
⊥) = 1, A2(C) = A2(C

⊥) = 75, A3(C) = A3(C
⊥) = 0 and A4(C) = A4(C

⊥) = 180.

Thus C is a [4, 2, 2] dually almost MRD code over F24 . Consequently, by Theorem 4.3 the

elements of Dd(C) are the blocks of an S(1, 2, 4)2 Steiner system. Note that this 2-Steiner

system is one of the well known spreads.

By Lemma 4.2, the existence of a q-Steiner system S(d − 1, d, 2d)q for d ≥ 2 implies

the existence of S(1, 2, d + 2)q. Since the number of blocks of such a Steiner system is
[d+2

1 ]
q

[21]q
it follows that q2 − 1 | qd+2 − 1. Thus d must be even, hence d+ 1 odd.

Theorem 4.6. If a q-Steiner system S(d − 1, d, 2d)q with d ≥ 2 exists, then d + 1 is a

prime.

Proof. Let p be a prime with p | d+1 6= p, hence d+1 = px with x ≥ 2. Since p−1 ≤ d−1

Lemma 4.2 implies the existence of an S(p−1, p, d+p)q Steiner system. This Steiner system

has exactly [
d+p
p−1
]
q[

p
p−1
]
q

=

[
d+p
p−1
]
q[

p
1

]
q

∈ N
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blocks. We have[
d+p
p−1
]
q[

p
1

]
q

=
(qd+p − 1)(qd+p−1 − 1) · · · (qd+2 − 1)

(q2 − 1)(q3 − 1) · · · (qp − 1)
. (∗)

Since d + 1 = px we see that p - d + i for i = 2, . . . , d + p. Note that p is odd. Thus,

by Zsigmondy’s Theorem ([15], Chap. IX, Theorem 8.3), there exists a prime r such that

r | qp − 1 but r - q − 1. Since gcd(qn − 1, qm − 1) = qgcd(m,n) − 1 the prime r does not

divide any of the factors of the numerator in (∗), a contradiction.

Corollary 4.7. Let C ≤ F2d
qm be a [2d, d, d] dually AMRD code with d ≥ 2 and Ad+1(C) =

0. Then d+ 1 is a prime.

Proof. This is an immediate consequence of Theorem 4.3 and Theorem 4.6.

Remark 4.8. In ([12], Theorem 25) it has been shown that a [2d, d, d] dually AMDS code

with no code words of weight d+ 1 and d+ 2 is either the binary [8, 4, 4] Hamming code

or the ternary [12, 6, 6] Golay code. In contrast, a [2d, d, d] dually AMRD code in F2d
qm

(2d ≤ m) with Ad+1 = 0 = Ad+2 does not exist. This can be seen as follows. Using the

weight distribution of the code ([8], Theorem 27) we get

Ad =

[
2d
d+1

]
q[

d
1

]
q

(qm − 1)

since Ad+1 = 0, and

Ad =

[
2d
d+2

]
q

q
[
d
2

]
q

(qm − 1)

{[
d+ 2

1

]
q

− (qm + 1)

}

since Ad+2 = 0. Comparing these equations leads to

1 =
q2 − 1

q(qd+2 − 1)

{[
d+ 2

1

]
q

− (qm + 1)

}
,

hence

qm+2 − qm + q2 = qd+2,

which has no solution since 2 ≤ 2d ≤ m.
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