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1 Introduction

Determining the number of p-blocks of a finite group is in general a very subtle

task and extremly difficult to answer if at all. The easiest case, namely that G has

only one block, has been settled completely by Harris in [10]. The next case, i.e., a

complete characterization of groups G which have exactly two blocks does not seem to

be accessible. In particular, the situation Op(G) 6= 1 seems out of reach. However if we

restrict to the case that G has only the principal p-block and a p-block of defect zero

(which implies Op(G) = 1) the methods are strong enough to determine the group up to

some extent. This case is of particular interest since the canonical situation is that of a

finite simple group of Lie type in defining characteristic p (see [12], section 8.5). In this

case the block of defect zero consists of the Steinberg character which has degree |G|p.

Definition 1.1 A finite group G is called Lie-type-like for the prime p if G has exactly

the principal p-block and a p-block of defect zero with an irreducible ordinary character

of degree |G|p.

In this paper we prove the following two theorems where the second one depends on

the classification of finite simple groups.
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Theorem 1.2 Let G be a finite group with F∗(G) = F(G) and let p be a prime dividing

|G|. Then G is a Lie-type-like group for the prime p if and only if G = HP where H is

an elementary abelian normal r-subgroup (r 6= p a prime) and P is a Sylow p-subgroup

of G which acts regularly on the non-trivial elements of H.

All groups occuring in Theorem 1.2 can be classified easily which leads to the fol-

lowing consequence.

Corollary 1.3 Let G be a finite group with F∗(G) = F(G) and let p be a prime dividing

|G|. Then G is a Lie-type-like group for the prime p if and only if one of the following

holds.

(i) G = HP ≤ GL(m, 2), where H = Fm2 and P is a Singer cycle in GL(m, 2) of

order a Mersenne prime p acting regularly on the non-trivial elements of H.

(ii) G = HP , where H = Fr with r a Fermat prime and P = F∗r acts on H by

multiplication.

(iii) G = S3 or (C3 × C3).Q8, where Q8 is the quaternion group of order 8 acting

regularly on the non-trivial elements of C3 × C3.

Proof. The “if” part is clear, and it suffices to prove the “only if” part. By Theorem

1.2, we write G = HP with |P | = pn and |H| = rm. Since P acts regularly on the

non-trivial elements of H we have rm − 1 = pn.

If m = 1 = n, then r = 3, p = 2 and G = S3.

If n = 1 < m, then p is a Mersenne prime and P (of order p) is generated by a Singer

cycle in GL(m, 2) acting on H = Fm2 .

If m = 1 < n, then r = |P | + 1 = 2n + 1 is a Fermat prime and P = F∗r acts on

H = Fr by multiplication.

Thus we may assume that m,n > 1. In this case the only solution of rm − 1 = pn is

32 − 1 = 23 according to [19], and we get G = (C3 ×C3).Q8 where Q8 is the quaternion

group of order 8. (Since p and r are primes the deep result of [19] can be avoided due

to elementary calculations.) 2

Theorem 1.4 Let G be a finite group with F∗(G) 6= F(G) and let p be a prime dividing

|G|. Then G is a Lie-type-like group for the prime p if and only if one of the following

holds.

(i) G is a finite simple group of Lie type in defining characteristic p.

(ii) p = 3 and G = L2(8).3, the automorphism group of L2(8).

(iii) p = 2 and G = S6,M10, A8 or L2(7).

Note that L2(8).3 = 2G2(3), S6 = Sp(4, 2), A8 = L4(2) and L2(7) = L3(2). Thus, as

an immediate Corollary we have

Corollary 1.5 If G is a non-solvable Lie-type-like group then G is a finite group of Lie

type in defining characteristic p or p = 2 and G = M10. Furthermore, G is simple for

p ≥ 5.
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Throughout this paper all groups are assumed to be finite and p always means a

prime. By Aut(G) we denote the automorphism group and by Bl(G) the set of p-

blocks of G. Sometimes we also use the notation Blp(G) to avoid ambiguity. We say

that two blocks B1 and B2 are Aut(G)-conjugate if there is a σ ∈ Aut(G) such that

Bσ
1 = B2. Similar to the notation for conjugacy classes, we use Cl(Bl(G)) to denote the

set of Aut(G)-conjugate classes of p-blocks of G. Finally, cd(G) stands for the set of

irreducible ordinary character degrees of G. For other notations, the reader is referred

to the books [21], [22], [14].

2 Preliminaries

In this section we collect some general results on p-blocks of finite groups.

Lemma 2.1 If N �G then |Bl(G)| ≥ |Cl(Bl(N))|. In particular, G has at least three

p-blocks if |Cl(Bl(N))| ≥ 3.

Proof. This is obvious (see [21], Chap. 5, Lemma 5.3). 2

Lemma 2.2 We have |Bl(G)| ≥ |Bl(G/Z(G))| with strict inequality if Op′(Z(G)) 6= 1.

Proof. Clearly, |Bl(G/Op′(Z(G))| = |Bl(G/Z(G)|. Moreover a p-block ofG/Op′(Z(G))

corresponds to a p-block of G by inflation. The second statement follows by the fact

that G has a p-block whose characters do not restrict trivially on Op′(Z(G)) 6= 1. 2

Corollary 2.3 Let N�G with Op′(Z(N)) 6= 1. If |Bl(N/Z(N))| ≥ 2, then |Bl(G)| ≥ 3.

Proof. According to Lemma 2.2 the normal subgroup N has at least three blocks which

belong to different conjugacy classes. Thus the assertion follows by Lemma 2.1 2

Proposition 2.4 Suppose that G has exactly two p-blocks.

a) If F∗(G) = F(G) then Op′(G) 6= 1.

b) If Op′(G) 6= 1 then Op′(G) is an abelian minimal normal subgroup of G.

c) If F∗(G) 6= F(G) and p is odd then Op′(G) = 1.

Proof. We put H = Op′(G).

a) Obviously, F∗(G) = F(G) = Op(G) × N where N ⊆ H. If H = 1 then G has only

one p-block by ([22], Corollary 9.21), since

CG(Op(G)) = CG(F∗(G)) ⊆ F∗(G) = Op(G),

a contradiction. Thus H 6= 1.

b) Note that the p-blocks of H which are covered by the same p-block of G are G-

conjugate and that every p-block of H has only one irreducible character. Since G has
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exactly two p-blocks it follows that |cd(H)| ≤ 2. Thus, by Corollary 12.6 of [14], the

group H is solvable.

We claim that |cd(H)| 6= 2. If |cd(H)| = 2 then the irreducible characters of H of

same degree must be G-conjugate. It follows that H has only one irreducible character

of degree 1. But this implies |H : H ′| = 1, which contradicts the solvability of H 6= 1.

Thus we have |cd(H)| = 1 and therefore H is abelian. Since G has exactly two

p-blocks, all nontrivial irreducible characters of H must be G-conjugate. According to

([14], Corollary 6.33), we deduce that all nontrivial elements of H are G-conjugate. This

means that H is an abelian minimal normal subgroup of G.

c) Assume H 6= 1. By part b), H is an elementary abelian r-subgroup for some prime

r 6= p. Hence H ≤ F(G) ≤ F∗(G). Let E(G) denote the layer of G.

If N = HE(G) then H ≤ Z(N) and N/Z(N) ∼= E(G)/Z(E(G)) (see [16], Section

6.5). Clearly, E(G)/Z(E(G)) is a direct product of some nonabelian simple groups. By

[2], we have |Bl(N/Z(N))| = |Bl(E(G)/Z(E(G)))| ≥ 2 and with Corollary 2.3 we obtain

|Bl(G)| ≥ 3, a contradiction. Thus we have proved H = 1. 2

Remark 2.5 The assumption that p is odd in part c) of Proposition 2.4 can not be

removed. For example, take N = M24×Z5 and let Z4 act trivially on M24 and faithfully

on Z5. Denote by G the corresponding semidirect product. Then it is easy to see that

G has exactly two 2-blocks. However, O2′(G) = Z5 6= 1.

Proposition 2.6 Let G be a Lie-type-like group for the prime p. Then F∗(G) is either

a nonabelian simple group or an abelian minimal normal subgroup of G.

Proof. Let L = F∗(G). Since G has a p-block of defect zero, it follows that Op(G) = 1.

By Proposition 2.4 b), we know that Op′(G) is an abelian minimal normal subgroup of

G. Therefore, if L = F(G) then L = F(G) = Op′(G) and we are done. Thus we may

assume L 6= F(G) in the following.

We first suppose that p is odd. SinceG is a Lie-type-like group, we have |Cl(Bl(L))| =
2 and that L has an irreducible character of degree |L|p. According to Proposition 2.4 c)

we have Op′(G) = 1. So the generalized Fitting subgroup L of G is a direct product of

some non-abelian simple groups. Set L = S1×· · ·×Sk with simple groups Si. According

to [2] we have |Bl(Si)| ≥ 2 for i = 1, . . . , k. Therefore |Cl(Bl(L))| ≥ 3 if k > 1 and

by Lemma 2.1, the group G has at least three p-blocks, a contradiction. Thus we have

k = 1 which proves that L is a non-abelian simple group.

We now suppose p = 2. We claim F(G) = 1. Suppose the contrary is true. Then we

may assume that |Bl(L/Z(L))| = 1, by Proposition 2.4 b) and Corollary 2.3. According

to [10] the factor group L/Z(L) is a direct product of copies of M22 and M24. Now we

choose Z(L) ≤ L1 ≤ L, where L1 is normal in L, such that L1/Z(L) ∼= M22 or M24.

Observe that L and therefore L1 must have an irreducible character χ of defect zero and

degree χ(1) = |M22|2 or |M24|2 respectively. But such a character does not exist since

in the first case we have

L1 = M22 × Z(L) or L1 = 3.M22 ×A, A an elementary abelian 3-group,
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in the second

L1 = M24 × Z(L).

Thus the claim is proved.

It follows that L is a direct product of some non-abelian simple groups. Since nei-

ther M22 nor M24 has an irreducible character of 2-defect zero, we see that L has no

composition factor isomorphic to M22 or M24. Hence all composition factors of L have

at least two 2-blocks. Using the same argument as in the p odd case, we get that L must

be simple. 2

Recall that X is said to be of type M if X is a quasisimple group with X/Z(X)

isomorphic to a simple group M .

Lemma 2.7 Let G be a finite group with exactly two 2-blocks. If O2′(G) 6= 1 then all

components of F∗(G) are of type M22 or M24.

Proof. The statement of the Lemma is a direct consequence of Proposition 2.4 b),

Corollary 2.3, and Theorem 1 of [10]. 2

In the following we need the definition of a p-deficiency class which was introduced

by R. Brauer in ([1], Sect. IV).

Definition 2.8 If r is a non-negative integer then G is said to be of p-deficiency class

r if all non-principal p-blocks of G have defect less than r.

According to this definition, G is of p-deficiency class 0 if and only if G has only one

p-block, and G is of p-deficiency class 1 if and only if all non-principal p-blocks of G

are of defect zero. There are several equivalent conditions which characterize groups of

p-deficiency class 1.

Lemma 2.9 ([10], Corollary 3.8). A finite group G is of p-deficiency class 1 if and only

if CG(x) is of p-deficiency class 0 for all x ∈ G of order p.

Using the same argument as in ([17], Proposition 2.5) we get

Lemma 2.10 Let G be a finite group. Then the following two statements are equivalent.

a) G is of p-deficiency class 1.

b) CG(x) is of p-deficiency class 0 for every p-element x 6= 1 of G.

Proof. According to Lemma 2.9 it suffices to show that a) implies b).

Let 1 6= x be a p-element of G and let b be a p-block of CG(x) with defect group D.

Clearly x ∈ D and therefore CG(D) ≤ CG(x). Thus b is admissible (see [21], p. 322). By

([21], Chap. 5, Theorem 3.6 and Lemma 3.3), the block bG is defined and D ≤G δ(bG),

where δ(bG) denotes a defect group of bG. So the defect group of bG is not trivial. Since
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G is of p-deficiency class 1, it follows that bG is the principal p-block of G. By Brauer’s

Third Main Theorem ([21], Chap. 5, Theorem 6.1), b is the principal p-block of CG(x).

Thus CG(x) is of p-deficiency class 0. 2

We would like to mention that the next result may be seen as a strengthening of a

result of R. Brauer (see [2], Theorem 2.1).

Corollary 2.11 Let G be a finite group and let 1 6= x ∈ G be a p-element for an odd

prime p. If F∗(CG(x)) 6= F(CG(x)) or |Bl(CG(x))| ≥ 2 then G has a non-principal

p-block which is not of p-defect zero.

Proof. If F∗(CG(x)) 6= F(CG(x)) then the generalized Fitting group of CG(x) contains

a non-trivial component N (i.e. a quasisimple subnormal subgroup). Since p is odd we

have |Bl(N)| ≥ 2, by [2]. Hence |Cl(Bl(N))| ≥ 2 as the principal block of N is stabilized

by G. Thus |Bl(CG(x))| ≥ 2 according to a repeated application of Lemma 2.1. By

Lemma 2.10, we obtain that G is not of p-deficiency class 1 which proves the corollary.

2

3 Proof of Theorem 1.2

Clearly, if G is a Frobenius group as in Theorem 1.2 then G has only the principal

block and a block of defect zero whose irreducible character is of degree |G|p according

to Clifford’s theorem.

Thus we may assume that G is a finite Lie-type-like group and that F∗(G) = F(G).

We have to prove that G has the structure as given in Theorem 1.2. By Proposition

2.4 we know that H = Op′(G) is an abelian minimal normal subgroup of G, hence is

an r-group. Furthermore, since G has exactly two blocks, G acts transitively on the

non-trivial elements of H, by ([22], Corollary 9.3). Let χ be any non-trivial irreducible

character of H and let T (χ) denote the inertial group of χ.

Lemma 3.1 T (χ)/H is a p′-group.

Proof. Since H is a normal p′-subgroup, a block of G/H forms a block of G by inflation

([21], Chap. 5, Theorem 8.8). Thus G/H has exactly one block and f0 = 1
|H|
∑

h∈H h is

the block idempotent of the principal block of G. Note that the sum of block idempotents

always equals to 1. Thus f1 = 1 − f0 is the block idempotent of the block of defect

zero. Clearly, 1 6∈ supp(f1) since otherwise G has two blocks of maximal defect. This

implies that for each 1 6= h ∈ H the centralizer CG(h) is a p′-group. Thus, by Brauer’s

permutation lemma ([21], Chap. 2, Lemma 2.19), the stabilizer T (χ) of χ is a p′-group

for all non-trivial characters χ of H. 2

Lemma 3.2 We have T (χ) = H.
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Proof. By the Fong-Reynolds theorem ([21], Chap. 5, Theorem 5.10), the blocks of

T (χ) lying over χ are in one-to-one correspondence with the blocks of G lying over χ.

Thus there is only one block of T (χ) lying over χ. Note that this block must be of defect

zero, hence consists of an irreducible character, say ψ. This implies that

ψ|H = eχ for some e ∈ N.

By ([14], Exercise 6.3 on page 95), we have e2 = |T (χ) : H|, and by Lemma 3.1, we

know that |T (χ) : H| is a p′-number. On the other hand the non-principal block of G

consists of an irreducible character of degree |G|p which implies that e is a power of p.

Thus T (χ) = H. 2

To complete the proof of Theorem 1.2 note that Λ = χG is an irreducible character of G

of p-defect zero and |G : H| = Λ(1) = |G|p. Hence G = HP where H is an elementary

abelian r-group (r a prime) and P is a Sylow p-subgroup of G which acts regularly on

H \ {1}. This completes the proof.

4 Blocks of non-abelian simple groups

In order to prove Theorem 1.4 we investigate finite non-abelian simple groups. Ac-

cording to the classification theorem of finite simple groups such a group is one of the

following: an alternating group An (n ≥ 5), a finite simple group of Lie type, or one

of the 26 sporadic simple groups. Note that there are some isomorphic cases, such as

L2(4) ∼= L2(5) ∼= A5 and L2(9) ∼= A6.

4.1 Alternating groups

Proposition 4.1 Let n ≥ 5 and let p be a prime dividing |An|. Then |Cl(Bl(An))| ≥ 3

with the following exceptional cases:

(i) |Cl(Blp(An))| = 2, where p = 2, 3 and n = 5, 6, 7;

(ii) |Bl2(An)| = 2 for n = 5, 7, 8, 9, 11, 13; and

(iii) |Bl5(A5)| = 2.

Furthermore G = A5, A6 and A8 are the only groups which have an irreducible character

of degree |G|2 in the cases (i) and (ii).

Proof. The complex irreducible characters of Sn are naturally labeled by the partitions

of n. Let Irr(Sn) = {[λ] | λ ` n} where λ ` n denotes a partition of n. Then the

restriction [λ]An of [λ] ∈ Irr(Sn) to An is irreducible if λ is not self-conjugate. Using

GAP [8], it is easy to check that the proposition is true for n = 5, 6, 7 and 8. So we may

assume n ≥ 9.

We first consider the case n = p. Let α = (p − 2, 2) and β = (p − 3, 2, 1) be

partitions of p. By the hook formula ([15], Theorem 20.1), we have [α](1) = p(p−3)
2 and
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[β](1) = p(p−2)(p−4)
3 . Therefore,{

p(p− 3)

2
,
p(p− 2)(p− 4)

3

}
⊆ cd(Ap).

Thus An = Ap has at least two p-blocks of defect zero which are not Aut(G)-conjugate

and we are done in this case.

Similarly, the above statement holds for the cases n = p+1 and n = p+2. This follows

from the partitions α′ = (p, 1), β′ = (p − 1, 1, 1), α′′ = (p, 1, 1) and β′′ = (p − 1, 2, 1),

which imply that {p, p(p−1)2 } ⊆ cd(Ap+1) and {p(p+1)
2 , (p+2)p(p−2)

3 } ⊆ cd(Ap+2).

Next we assume that n > p + 2. Let x = (12 · · · p). Then CAn(x) = 〈x〉 × An−p.
By Theorem 1 of [10], An−p is not of p-deficiency class 0 for n > 7. So An is not

of p-deficiency class 1, by Lemma 2.10. Since for all n ≥ 5 the alternating group An
always has a p-block of defect zero provided p ≥ 5 (see [9], Corollary 1), we deduce that

|Cl(Bl(An))| ≥ 3 for p ≥ 5.

We now consider the case p = 3 and n = 3m + 1 for some m > 2. Let B1 and B2

be the two 3-blocks of Sn corresponding to the 3-cores (3, 1) and (5, 3, 12), respectively.

If d(Bi) denotes the defect of Bi for i = 1, 2 then, by ([4], Proposition 2.12), we have

d(B1) = ν3((n − 4)!) and d(B2) = ν3((n − 10)!), where ν3 means the 3-adic valuation.

Obviously, d(B1) > d(B2).

Suppose that bi is the 3-block of An covered by Bi for i = 1, 2. Since |Sn : An| = 2,

it follows that d(b1) = d(B1) > d(B2) = d(b2). Moreover, since

ν3(n!) > ν3((n− 4)!) > ν3((n− 10)!)

we see that neither b1 nor b2 is the principal p-block of An. Thus we have again

|Cl(Bl(A3m+1))| ≥ 3.

Similarly, we obtain |Cl(Bl(An))| ≥ 3 if n = 3m− 1 or n = 3m for some m > 2. In

the first case we choose the 3-cores (3, 12) and (4, 2, 12), in the second the 3-cores (4, 2)

and (3, 22, 12).

Finally, we assume that p = 2. GAP’s library [8] shows that An has exactly two

2-blocks for n = 9, 11, 13. If n is even and n ≥ 10, then we have at least three 2-cores

for partitions of n, namely,

( ), (3, 2, 1), (4, 3, 2, 1).

Since |Sn : An| = 2, it follows that |Cl(Bl(An))| ≥ 3 in this case. The same holds true

if n is odd and n ≥ 15. Indeed, we may choose the 2-cores (1), (2, 1) and (5, 4, 3, 2, 1).

2

4.2 Simple groups of Lie type

For a finite group G we denote by π(G) the set of primes dividing the order of G.

Proposition 4.2 Let G be a finite simple group of Lie type in defining characteristic r

and let p be a prime dividing |G|. If p 6= r and |π(G)| ≤ 4 then |Cl(Bl(G))| ≥ 3, with

the following exceptional cases:
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(i) G ∼= L2(4) ∼= L2(5) or L2(8), p = 3, and |Cl(Bl(G))| = 2;

(ii) G ∼= L2(4), L2(7) or L2(9), p = 2, and |Cl(Bl(G))| = 2. Moreover, all of them

have an irreducible character of degree |G|2.

Proof. By Theorem 2 of [27] or Theorem 1 of [13], either G ∼= L2(q) or G is one of the

following groups:

L3(3), L3(4), L3(5), L3(7), L3(8), L3(17), L4(2), L4(3),

U3(3), U3(4), U3(5), U3(7), U3(8), U3(9), U4(2), U4(3), U5(2),

Sp4(4), PSp4(5), PSp4(7), PSp4(9),

O7(2), O+
8 (2),2 F4(2)′, G2(3), 3D4(2),

Sz(8) and Sz(32).

Step 1. Suppose that p is odd and G ∼= L2(q). GAP’s library shows that |Cl(Bl(G))| ≥ 3

for q ∈ {4, 5, 7, 8, 9, 11}, with the exceptions q = 4, 5, 8 and p = 3. In the exceptional

cases we have |Cl(Bl(G))| = 2. Thus we may assume q = rf > 11. For the irreducible

characters of L2(q) we refer the reader to ([7], Section 38).

Assume that q is odd and 4 | q−1. According to the character table of L2(q) we have

cd(G) = {1, q, q + 1, 12(q + 1), q − 1}. If p | q + 1 then G has two irreducible characters

of p-defect zero and of distinct degrees. This implies |Cl(Bl(G))| ≥ 3. To deal with the

case p | q − 1 note that |Out(G)| = (2, q − 1)f (see [5], Table 5, Automorphisms and

multipliers of the Chevalley groups). Since G has q−1
4 > 2f irreducible characters of

degree q − 1 we also have |Cl(Bl(G))| ≥ 3 if p | q − 1.

Next we assume that q is odd and 4 - q−1. Then cd(G) = {1, q, q+1, q−1, 12(q−1)}.
Similarly as above, G has two irreducible characters of p-defect zero and distinct degrees

if p | q− 1 and G has q−3
4 > 2f irreducible characters of degree q+ 1. Both cases imply

again |Cl(Bl(G))| ≥ 3.

Finally, assume that G = L2(q), where q = 2f > 8. Then cd(G) = {1, q, q+ 1, q−1}.
Moreover, G has q−2

2 > |Out(G)| = f irreducible characters of degree q + 1 and G has
q
2 > |Out(G)| = f irreducible characters of degree q − 1. This proves |Cl(Bl(G))| ≥ 3.

Step 2. Suppose that p = 2 and G ∼= L2(q). Since p - q we have q odd. GAP’s library

[8] shows |Cl(Bl(L2(11)))| = 4 and that the proposition holds for q = 5, 7, 9. For q ≥ 13,

we have |Cl(Bl(G))| ≥ 3 by using the same argument as in Step 1.

Step 3.We now suppose thatG is a group in the list of the beginning of the proof. By the

Atlas [5] and the online data of [18] or using GAP [8], we deduce that |Cl(Bl(G))| ≥ 3.

In fact, for odd p, we have that G satisfies one of the following properties:

(1) G has at least three p-blocks of distinct defect; or

(2) G has at least two p-blocks of defect zero which are not Aut(G)-conjugate.

For p = 2 the groups L3(3), U3(3), U4(3) and G2(3) are of 2-deficiency class 1. But it

still holds that there are at least three Aut(G)-conjugacy classes of 2-blocks. For the

remaining groups, the situation is the same as for odd p. 2

Proposition 4.3 Let G be a finite simple group of Lie type in defining characteristic r

and let p be a prime dividing |G|. If p 6= r and |π(G)| ≥ 5 then |Cl(Bl(G))| ≥ 3.
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Proof. Let G be a simple simply connected algebraic group over the algebraic closure

of a finite field Fq, where q is a power of the prime r, and let F : G → G be the

corresponding Frobenius endomorphism. Let Ĝ = GF be the finite group of fixed points

and assume that Ĝ/Z(Ĝ) is simple. Since all finite simple groups of Lie type apart from

Tits’ simple group can be constructed in such a way, we may assume G = Ĝ/Z(Ĝ).

In the following we may exclude the Tits simple group since it contains at least three

classes of p-blocks according to GAP. Let T be an F -stable maximal torus of G and

let (G∗, F ∗) be the dual pair of (G, F ) with respect to T (see [6], Definition 13.10).

Similarly, denote Ĝ∗ = G∗F and note that |G| = |(Ĝ∗)′|.
Recall that a Lusztig series E(Ĝ, s) associated to the geometric conjugacy class (s)

of a semisimple element s ∈ Ĝ∗ is the set of irreducible characters of Ĝ which occur in

some Deligne-Lusztig character RG
T (θ), where θ ∈ Irr(T ) and (T, θ) is of the geometric

conjugacy class associated to (s) (see [6], Definition 13.16). Lusztig’s fundamental result

asserts that Lusztig series associated to various geometric conjugacy classes of semisimple

elements of Ĝ∗ form a partition of Irr(Ĝ) (see [6], Proposition 13.17). Let σ ∈ Aut(Ĝ).

Then σ extends to a bijection morphism σ1 : G→ G of algebraic groups which commutes

with F (see also the remark after Corollary 2.5 of [23]). By ([23], Corollary 2.4), σ1
is compatible with Lusztig series and preserves the orders of the semisimple elements

labelling them.

Let s be a semisimple p′-element of Ĝ∗. By ([6], Theorem 13.23), there is a bijection

between E(Ĝ, s) and the set of unipotent characters of C = CG∗(s)
F ∗ . Therefore,

to every conjugacy class (s) corresponds a so-called semisimple irreducible character

χs ∈ E(Ĝ, s) which is in correspondence with the trivial character of C. Furthermore,

if 1 6= s is contained in the derived subgroup (Ĝ∗)′ then Z(Ĝ) ⊆ ker(χs) by ([24],

Lemma 4.4). So χs can be viewed as an irreducible character of G. Since |π(G)| ≥ 5,

we can take at least three {p, r}′-elements of (Ĝ∗)′ of different prime orders, say si
for i = 1, 2, 3. Thus the semisimple characters χsi corresponding to si are actually

irreducible characters of G and of Ĝ. As characters of G they are in blocks, say bi of

G. In addition, these characters remain irreducible modulo p by ([11], Proposition 1).

Since G = Ĝ/Z(Ĝ) it follows that each bi is contained in a (unique) block Bi of Ĝ (see

[21], Chap. 5, Theorems 8.8 and 8.10).

Furthermore, the set

Ep(Ĝ, s) :=
⋃

t∈CG∗ (s)F
∗

p

E(Ĝ, st)

is a union of p-blocks of Ĝ according to a fundamental result ([3], Théorème 2.2) due

to Broué and Michel. With the observation above, the E(Ĝ, si) and hence the blocks

Bi of Ĝ containing the χsi lie in different orbits under the action of the automorphism

group Aut(Ĝ). Since Aut(G) can be viewed as a subgroup of Aut(Ĝ), we conclude that

the blocks bi of G containing the χsi lie in different orbits under the action of Aut(G).

Thus |Cl(Bl(G))| ≥ 3. 2
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4.3 Sporadic simple groups

Proposition 4.4 Let G be one of the 26 sporadic simple groups. Then |Cl(Bl(G))| ≥ 3

except the following cases:

(i) G = M11 and Co3 with two 3-blocks;

(ii) G = M12, J2, Co1, Co2, HS,Ru, Suz and B with two 2-blocks, none of which is

Lie-type-like for the prime 2;

(iii) G = M22 or M24 with only one 2-block.

Proof. This is checked by using GAP [8]. 2

5 Proof of Theorem 1.4

In order to prove Theorem 1.4 we put L = F ∗(G) and suppose that G is a Lie-type-

like group for the prime p. By Proposition 2.6, the group L is simple. We first assume

that p is odd. According to the results of section 4 we know that L is either a simple group

of Lie type in defining characteristic p or one of the groups A7, L2(5), L2(8),M11, Co3.

Moreover in the last five cases we have p = 3.

Since CG(L) ≤ L we obtain G ≤ Aut(L). The case L = A5 can be ruled out since

both A5 and Aut(A5) have three 3-blocks. Furthermore, neither A7, S7 nor Co3 has a

3-block of defect zero. The group M11 does not have an irreducible character of degree

|M11|3. So it remains to deal with the case L = L2(8). However, if this is the case, the

group G has to be the automorphism group of L2(8) and we have proved part (ii) of the

theorem.

Now suppose that L is a simple group of Lie type in defining characteristic p. Let

St be the Steinberg character of L. By [25] and [26] the character St extends to G.

Since G is a Lie-type-like group for the prime p, it follows that G has a block of defect

zero which must cover the p-block of L containing St. Now Clifford’s theorem forces

|G/L| = 1, i.e., G = L, and we have part (i) of the theorem.

Finally it remains to consider the case p = 2 and we may assume that L is not a

simple group of Lie type in characteristic 2. By the results in section 4, L is one of the

groups A6, A8 or L2(7). According to the Atlas [5] we see that G is S6,M10, A8 or L2(7)

and we have part (iii) of the theorem.

To finish the proof we consider the other direction of equivalence. If G is one of the

cases in (ii) or (iii) then GAP’s library shows that G is a Lie-type-like group. As already

mentioned in the introduction simple groups of Lie type in defining characteristic p are

Lie-type-like groups for p. This accounts for (i) and finishes the proof.
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