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Abstract

We investigate and characterize ideals in a group algebra KG which have com-
plementary duals, i.e., ideals C in KG which satisfy KG = C ⊕ C⊥. In the special
case that G is a cyclic group we get an early result of Yang and Massey as an easy
consequence.

1 Introduction

Throughout this note let K be a finite field. According to Jim Massey [12], a linear code
C ≤ Kn is called complementary dual, or shortly an LCD code, if Kn = C ⊕ C⊥ which
is obviously equivalent to the property that C ∩ C⊥ = {0}. Like self-dual codes, LCD
codes are of particular interest. For instance, the class of LCD codes is asymptotically
good [12], LCD codes achieve the Gilbert-Varshamov bound [13], and recently it has been
shown that they play a crucial role in information protection [3].

A linear code C is called a group code (for a group G over the field K) if C is a right
ideal in a group algebra KG = {a =

∑
g∈G agg | ag ∈ G} where G is a finite group. The

vector space KG with basis g ∈ G serves as the ambient space with the weight function
wt(a) = |{g ∈ G | ag 6= 0}|. Note that KG carries in a natural way a K-algebra structure
via the multiplication in G. More precisely, if a =

∑
g∈G agg and b =

∑
g∈G bgg are given,

then
ab =

∑
g∈G

(
∑
h∈G

ahbh−1g)g.

In this sense cyclic codes are group codes for a cyclic group G, Reed Muller codes over
prime fields Fp are group codes for an elementary abelian p-group G [10] and there are
many other remarkable record codes which have been detected as group codes [7], [4], [2].
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Furthermore, the group algebra KG carries a natural symmetric non-degenerate G-
invariant bilinear form 〈. , .〉 which is defined by

〈g, h〉 =

{
1 if g = h
0 otherwise.

Here G-invariance means that 〈ag, bg〉 = 〈a, b〉 for all a, b ∈ KG and all g ∈ G. With
respect to this form we may define the orthogonal code C⊥ of C ≤ KG as usual and
say that C is self-dual if C = C⊥. In [16] we classified completely group algebras which
contain a self-dual ideal. More precisely, a self-dual group code for G exists over the field
K if and only if |G| and the characteristic of K are even.

In this note we investigate LCD group codes. Since the methods we are going to use are
from representation theory we give some basic facts of algebras, specially group algebras
and their modules in the next section. Everything there is known and written up only
for the reader’s convenience. For more facts in group and representation theory one may
confer with [1], chapter VII of [9] or [6].

2 Basic facts on algebras and their modules

Let A be a finite dimensional K-algebra. All modules respectively ideals which we consider
are from the right, if nothing else is mentioned, and of finite dimension over K. Recall
that e ∈ A is called an idempotent if e2 = e.

Lemma 2.1 The following are equivalent.

a) If A = A1 ⊕ A2 with ideals Ai, then there exists e = e2 ∈ A such that A1 = eA and
A2 = (1− e)A.

b) If e = e2 ∈ A, then A = eA⊕ (1− e)A.

Proof: a) Let 1 = e1 + e2 with ei ∈ Ai. We obtain e1 = 1e1 = (e1 + e2)e1 = e21 + e2e1.
Since e1, e

2
1 ∈ A1 and e2e1 ∈ A2 we get e1 = e21 and e2e1 = 0. Similarly e2 = e22 and

e1e2 = 0. Since eiA ≤ Ai and obviously e1A⊕ e2A = A we can take e = e1.
b) If ex = (1− e)y ∈ eA ∩ (1− e)A with x, y ∈ A, then

ex = e(ex) = e(1− e)y = 0

since e2 = e. Thus eA ∩ (1− e)A = 0. Furthermore for x ∈ A we obviously have

x = ex+ (1− e)x ∈ eA+ (1− e)A

which proves that A = eA+ (1− e)A. 2

Note that in the lemma above e is a central idempotent, i.e., e is an element in the
center Z(A) = {b ∈ A | ab = ba for all a ∈ A} of A if and only if the ideals Ai are 2-sided.
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Furthermore, eA is called indecomposable (i.e., it is not the direct sum of two non-zero
ideals) if and only if e is primitive (i.e., e can not be written as e = e1 + e2 with e2i = ei
and e1e2 = e2e1 = 0.)

For our purpose the most appropriate way to define a projective module is the following.
An A-module P is projective if it is a direct summand of a finitely generated free A-module,
i.e.,

P ⊕ P ′ ∼= A⊕ . . .⊕A = An

where P ′ is also an A-module. In case P is projective and indecomposable, one easily sees
that P is a direct summand of A. Thus by Lemma 2.1, we have P = eA with a primitive
idempotent e.

Finally, for each irreducible A-module M there exists (up to isomorphism) a unique
indecomposable projective A-module P (M) called the projective cover of M such that M
is a factor module of P (M). Actually, a indecomposable projective A-module P has only
one irreducible factor module which means it has only one maximal A-submodule.

We may write A = B1 ⊕ . . . ⊕ Bs where the Bi are 2-sided ideals which are 2-sided
indecomposable. By Lemma 2.1, we get Bi = fiA = Afi with fi in the center of A and
fifj = δijfi. The ideals Bi and idempotents fi are uniquely determined and called the
blocks of A.

Now we restrict to the group algebra A = KG.

Definition 2.2 If M is a KG-module, then the dual vector space M∗ = HomK(M,K)
becomes a KG-module via

m(fg) = (mg−1)f

where m ∈M,f ∈M∗ and g ∈ G. With this action M∗ is called the dual module of M .

To each a =
∑

g∈G agg ∈ KG (ag ∈ K) the adjoint of a is defined by â =
∑

g∈G agg
−1.

We call a self-adjoint if a = â. Note that the map ˆ : KG −→ KG defines an anti-
isomorphism of KG and for all a, b ∈ KG the bilinear form defined in the introduction
satisfies

〈a, b〉 = 〈b̂a, 1〉 = 〈1, âb〉.

Lemma 2.3 If e = e2 ∈ KG, then êKG ∼= eKG∗.

Proof: We may assume that e 6= 0 and define a map α : êKG −→ eKG∗ by

x(yα) = 〈x, y〉 ∈ K,

for x ∈ eKG and y ∈ êKG. Obviously, α is K-linear. But α is even KG-linear since

x((yg)α) = 〈x, yg〉 = 〈xg−1, y〉 = (xg−1)(yα) = x((yα)g),

where Definition 2.2 has been used in the last equality. Furthermore, α is a monomorphism
since x(yα) = 0 for all x ∈ eKG and some y = êa implies

0 = 〈eg, êa〉 = 〈g, ê2a〉 = 〈g, êa〉
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for all g ∈ G, hence y = êa = 0. Thus we are done since dim êKG = dim eKG =
dim eKG∗. 2

Now let C be an LCD group code, i.e., KG = C ⊕C⊥ where C is a right ideal in KG.
Note that C⊥ must be a right ideal as well since for all c ∈ C, c⊥ ∈ C⊥ and g ∈ G we have

〈c, c⊥g〉 = 〈cg−1, c⊥〉 = 0.

This shows that C is a projective KG-module inside KG. Furthermore KG/C⊥ ∼= C
since KG = C ⊕ C⊥. According to ([16], Proposition 2.3) we also have KG/C⊥ ∼= C∗

as KG-modules, hence C ∼= C∗. Thus a LCD group code is a projective self-dual module
(ideal) inside KG.

Lemma 2.4 Let p be the characteristic of K. If C is an LCD group code for G over K,
then |G|p | dimC.

Proof: As we have seen already C is a projective KG-module. The assertion now follows
by a well-known result of Dickson (see for instance ([9], Chap. VII, Corollary 7.16)). 2

3 LCD group codes

We start with the main result of this section from which we easily deduce in Corollary 3.7
an early result of Yang and Massey.

Theorem 3.1 If C ≤ KG is a right ideal in KG, then the following are equivalent.

a) C is an LCD code.

b) C = eKG where e2 = e = ê.

Proof: First suppose that b) holds true, hence C = eKG with e2 = e = ê ∈ KG.
Since e is an idempotent we have KG = eKG ⊕ (1 − e)KG, by Lemma 2.1. Recall that
〈ab, c〉 = 〈b, âc〉 for all a, b, c ∈ KG. Thus, for a, b ∈ KG we obtain

〈ea, (1− e)b〉 = 〈a, ê(1− e)b〉 = 〈a, e(1− e)b〉 =

= 〈a, 0〉 = 0.

This shows that (1− e)KG ≤ C⊥. Since

dim(1− e)KG = |G| − dimC = dimC⊥

we get the desired result (1− e)KG = C⊥.
Conversely suppose that a) holds true. Let KG = C ⊕ C⊥ and write 1 = e + f with

e ∈ C and f ∈ C⊥. It follows

e = e2 + fe and f = ef + f2.
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Since C and C⊥ are KG-modules we get e2 = e, f2 = f and ef = fe = 0. Furthermore,
KG = eKG⊕ fKG which implies that C = eKG and C⊥ = fKG. If a, b ∈ KG, then

0 = 〈ea, fb〉 = 〈a, êfb〉 = 〈a, ê(1− e)b〉.

Since the bilinear form is non-degenerate on KG we get ê(1−e) = 0 or equivalently ê = êe.
Finally

e = ˆ̂e = ̂̂ee = êe = ê,

and we are done. 2

The Theorem above says that C is an LCD group code exactly if it is generated by a
self-adjoint idempotent of KG.

Recall from group theory that a finite group G is called p-solvable (p a prime number)
if G has a chain of subgroups Gi such that

1 = G0 �G1 � . . .�Gn = G

where Gi−1 is a normal subgroup of Gi and the factor groups Gi/Gi−1 (i = 1, . . . , n) are
either abelian or a group whose order is not divisible by p.

Example 3.2 Let G be a p-solvable group. If |G| = psm where p - m, then G has a
subgroup H with |H| = m. (The subgroup H is usually called a p-complement of G.)
We put e = 1

|H|
∑

h∈H h. One easily computes e2 = e = ê. Thus eKG is an LCD group

code. Actually, eKG is the projective cover P (1G) of the trivial KG-module denoted by
1G. For n ∈ N we write n = npnp′ where np is the p-part of n and np′ the part which
is not divisible by p. With this notation we have dim eKG = |G|p and for the minimum
distance we get |G|p′ . Hence eKG is not very much of interest for error correction since
apart from trivial cases the minimum distance |G|p′ is much smaller than the Singleton
bound |G| − |G|p + 1.

We call a group code C self-adjoint if C = Ĉ = {ĉ | c ∈ C}. Note that Ĉ is a left
KG-module, but also a right KG-module in case G is abelian. If G is a cyclic group of
order n generated by g and we order G by 1, g, g2, . . . , gn−1, then (c0, c1, . . . , cn−1) cor-
responds to c =

∑n−1
i=0 cig

i. Thus ĉ corresponds to (c0, cn−1, . . . , c1). Since C is cyclic
(cn−1, cn−2, . . . , c1, c0) corresponds also to a code word. This shows that self-adjointness
for cyclic groups means nothing else than reversibility (see [11]).

Corollary 3.3 Let C ≤ KG be a right ideal in KG. Then the following are equivalent.

a) C is a self-adjoint LCD code.

b) C = fKG where f2 = f = f̂ where f lies in the center of KG.
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Proof: The direction from b) to a) is obvious. Thus let C be a self-adjoint LCD group
code. According to Theorem 3.1 we may assume that C = fKG with f2 = f = f̂ .
Self-adjointness of C means

C = fKG = f̂KG = KGf̂ = KGf = fKGf.

Now we write KG = fKG⊕ eKG where 1 = f + e. From this we obtain

KGe = fKGfe⊕ eKGe = eKGe,

since fe = 0. Thus KGe = eKGe ≤ eKG. In addition dimKGe = dim eKG implies that
eKG = KGe. This shows that

KG = fKG⊕ eKG

is a decomposition of KG into a direct sum of two-sided ideals. Therefore, for any a ∈ KG
we have

a = af + ae = fa+ ea ∈ fKG⊕ eKG.

Thus af = fa for all a ∈ KG which shows that f is in the center of KG. 2

In the language of representation theory condition b) in the corollary above means in
particular that C is a direct sum of blocks.

Recall that in case char K = 2 a K-vector space V with a non-degenerate K-bilinear
form 〈. , .〉 is called symplectic if 〈v, v〉 = 0 for all v ∈ V . Obviously, a self-dual code is
symplectic, but not vise versa.

Corollary 3.4 If char K = 2 and C ≤ KG is a right ideal in KG, then the following are
equivalent.

a) C is a symplectic LCD group code.

b) e2 = e = ê and 〈1, e〉 = 0, i.e., the coefficient of e at 1 is zero.

Proof: Suppose that a) holds true. According to Theorem 3.1 we only have to check
〈1, c〉 = 0 for all c ∈ C = eKG. Since 〈c, c〉 = 0 for all c in C we have in particular

0 = 〈e, e〉 = 〈1, êe〉 = 〈1, e2〉 = 〈1, e〉.

Conversely, suppose that 〈1, e〉 = 0. Again by Theorem 3.1 we know that C = eKG is an
LCD group code. First note that

〈eg, eg〉 = 〈e, e〉 = 〈1, êe〉 = 〈1, e〉 = 0

for all g ∈ G. Thus for a =
∑

g∈G agg and e =
∑

g∈G egg with ag, eg ∈ K we obtain

〈ea, ea〉 =
∑

g,h∈G
agah〈eg, eh〉 =

∑
{g,h}|g 6=h}

agah(〈eg, eh〉+ 〈eh, eg〉) = 0,
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where in the last equality we have used that the form 〈. , .〉 is symmetric and char K = 2.
Therefore 〈. , .〉 is symplectic on C. 2

Note that for the binary field K = F2 the condition a) in Corollary 3.4 means that
C is 2-divisible. It can not be 4-divisible except C = 0 since a 4-divisible code is always
self-orthogonal. Furthermore, if C is 2-divisible, then C⊥ is not 2-divisible and vice versa.

Remark 3.5 Let C = eKG with e2 = e = ê be an LCD code and let char K = 2.
Suppose that C⊥ = (1− e)KG does not contain the projective cover P (1G) of the trivial
module as a direct summand (up to isomorphism). By ([5], Proposition 2.2) it follows
that 〈· , ·〉|C⊥ is the polarization of a G-invariant quadratic form on C⊥. This means that
there is a G-invariant quadratic form q on C⊥ such that

q(a+ b)− q(a)− q(b) = 〈a, b〉

for a, b ∈ C⊥. Since the characteristic of K is 2, the form 〈· , ·〉|C⊥ is symplectic. Thus by
Corollary 3.4, we obtain 〈1, 1− e〉 = 0. This has the following interesting consequence in
representation theory.

Proposition 3.6 Let char K = 2 and let P (1G) = eKG be the projective cover of the
trivial module where e = e2 ∈ KG. Then e = 1 +

∑
g 6=1 λgg.

Proof: First note that for any characteristic p the projective cover P (1G) = eKG of the
trivial module is always an LCD group code. This follows from ([15], Satz 2.15) since
the multiplicity of P (1G) in KG is 1. It also says that P (1G) is not a direct summand
in (1 − e)KG. According to Theorem 3.1 we have e2 = e = ê. By Remark 3.5, the e-
lement 1−e does not contain 1 in its support. Since 1 = e+(1−e) the assertion follows. 2

If we specialize Theorem 3.1 to cyclic groups we immediately get an early result of
Yang and Massey as a corollary.

Corollary 3.7 [17] If g(x) is the generator polynomial of an [n, k] cyclic code C of block
length n (the characteristic of K and n not necessarily coprime), then C is an LCD code
if and only if g(x) is self-reciprocal and all the monic irreducible factors of g(x) have the
same multiplicity in g(x) and in xn − 1.

Proof: Let C be a cyclic LCD group code for G over the field K of characteristic p. Clearly,
C is self-adjoint since G is abelian. We consider C in K[x]/(xn−1). In particular, as men-
tioned in the section below Example 3.2, C is reversible. Thus if g(x) = g0 +g1x+ . . .+xr

is a generator polynomial of C, then g∗(x) = g0x
rg(1/x) is also a generator polynomial,

hence g∗(x) = ag(x) with a ∈ K×. Since both polynomials are monic we get a = 1, hence
g(x) is self-reciprocal. The assertion on the multiplicity is an immediate consequence of
a well-known fact in representation theory. For the reader’s convenience we give a short
argument to see this fact. We write G = P × Q where P is a Sylow p-subgroup of G
and H is a p-complement. Thus KG ∼= KP ⊗KQ where the group algebra KP is unis-
erial with exactly |G|p composition factors isomorphic to the trivial module and KQ is a
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semisimple algebra. Hence each projective indecomposable KG-module is uniserial (i.e.,
the submodules form a chain) with |G|p isomorphic composition factors and the multi-
plicity of a fixed irreducible KG-module in KG equals |G|p as well. Finally note that an
irreducible module corresponds to a normed irreducible polynomial. 2

4 Examples, remarks and questions

Example 4.1 Let G = S3 be the symmetric group on 3 letters and let K be a field of
characteristic 2. If g ∈ G is of order 3, then e = g + g2 = e2 = ê is a central self-adjoint
idempotent in KG. The group code C = eKG is a self-adjoint LCD code of dimension 4
and minimum distance 2. In particular, C is a [6, 4, 2] almost MDS code, which is optimal
as a [6, 4] code.

Example 4.2 Let G = A4 be the alternating group on 4 letters and let K be a field of
characteristic 3. We put e = g + h+ gh ∈ KG where g, h generate a Klein four group in
G. The group code C = eKG is a self-adjoint LCD code of dimension 9 and minimum
distance 2. In particular, C a [12, 9, 2] code, which is optimal as an LCD code (see [14]).

Example 4.3 Let G = A5 be the alternating group on 5 letters and let K be the binary
field. Let e be the sum of all elements of order 3 and 5. Thus wt(e) = 44. The group
code C = eKG is a self-adjoint LCD code of dimension 16 and minimum distance 18.
Furthermore 〈· , ·〉|C is symplectic, by Corollary 3.4. Note that according to Grassl’s table
[8] the minimum distance of a binary optimal [60, 16] code is between 20 and 22.
If we take analogously the 2-block of defect 0 of GL(3, 2) we get an [168, 64, 14] LCD code.
An optimal binary [168, 64] code has at least minimum distance 32 (see [8]).

Lemma 4.4 Let G be abelian and let C = eKG ≤ KG with e2 = e = ê 6= 1, hence C
is an LCD code. If in addition C is an MDS code, then the characteristic of K does not
divide |G|, i.e., KG is a semisimple algebra.

Proof: Let p denote the characteristic of K. Since ep = e one easily sees that e has
coefficients different from 0 only at p′-elements, hence only in H = Op′(G) (the largest
normal p′-subgroup of G). Furthermore, supp(1− e) ≤ supp(e) + 1. With C the dual C⊥

is an MDS code as well. It follows

|G|+ 2 = d(C) + d(C⊥) ≤ 2 supp(e) + 1 ≤ 2|H|+ 1,

hence |H| > |G|
2 . Since H is a subgroup of G we obtain G = H. Thus p does not divide

|G|. 2

Remark 4.5 There are LCD MDS group codes over Fq and dimension k with 0 < k < n
and length n = q − 1, if
a) (Carlet-Guilley [3]) q is even and k arbitrary or
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b) q is odd and k is even.
The codes may be chosen as Reed-Solomon codes. A proof for a) is given in [3]. It uses the
characterization of cyclic LCD codes given in Corollary 3.7. The same argument works
also in part b). For q and k odd the Reed-Solomon codes are not LCD codes.

Question 4.6 Let G be an arbitrary finite group and suppose that KG contains an LCD
group code which is also an MDS code. Does this imply that the characteristic of K does
not divide |G|?

Remark 4.7 On A = Kn×n the rank metric is defined by d(a, b) = rank(a − b) for
a, b ∈ A. We may endow A with the Delsarte bilinear form

〈a, b〉 = tr(abt)

for a, b ∈ A where tr denotes the trace and ·t the transpose of matrices. In A we consider
rank metric codes. Similarly to group codes one can prove that a right ideal C ≤ A is an
LCD code if and only if C = eA where e2 = e = et. Unfortunately, if e 6= 0, then C has
minimal distance 1. This can be seen as follows:
We may assume e 6= 1. The minimal polynomial me(x) of e = e2 is me = x(x − 1).
Therefore 0 and 1 are the only eigenvalues of e and there exists a regular matrix g such
that

eg = g−1eg = diag(1, . . . , 1, 0, . . . , 0)

where 1 ≤ k < n entries are equal 1. Thus the rank metric code Cg = (eA)g = egA has
minimum distance 1 as

egA = {
(
a
0

)
| a ∈ Kk×n}.

This implies that C has minimum distance 1 as well.
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