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Abstract

Similarly to the Frobenius-Schur indicator of irreducible characters we consider
higher Frobenius-Schur indicators vyn(x) = ﬁ > gec x(g?") for primes p and n €
N, where G is a finite group and x is a generalized character of G. It turns out that
these invariants give answers to interesting questions in representation theory. In
particular, we give several characterizations of groups via higher Frobenius-Schur

indicators.
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1 Introduction

Throughout the paper let G be a finite group, p a prime and k a splitting field of
characteristic p for G and all its subgroups. In some of the proofs we take k as the
residue field of a p-modular system (K,R,k = R/p) where p € p = 7R. By a we
denote the p-exponent of G, i.e., a = min{n | n € N, g¢" =1 for all p-elements g € G}.
Let Gpn = {x € G | 2?" = 1} for n € Nand Gy = {g € G | p t ord(g)}. Then
the k-vector space kGpn (k not necessarily of characteristic p) becomes a kG-module
via the conjugation action by G. If {z1,z2, -+ ,2,} is a set of representatives of the

G-conjugacy classes of Gn, we obtain the natural decomposition

kan = (kCG(:BI))G b (kCG(m))G DD (kCG(UCr))G

In the case of even characteristic, i.e., p = 2, the so-called involution module kGo

has been studied to some extend by several authors. By ([5], Corollary 4.6), we have

L+ |Go| =D ma(x)x(1)

X



where the sum runs through the set of irreducible complex characters of G and va(x)
denotes the Frobenius-Schur indicator of x. Robinson started in [18] the control of
the projective summands of kGo by properties of the Frobenius-Schur indicator. In a
series of papers [11, 12, 13, 14] Murray continued the investigations of the structure
of kG2. The block decomposition of kG2 has been given in [9] by Martinez-Pérez and
the second author, using a natural splitting of the cohomology module H'(G, A%(kQ)),
which turned out to be isomorphic to the involution module.

In this note we continue the investigations of the structure of kG, in particular for

odd primes p. Here the higher Frobenius-Schur indicators are coming in.

2 The module kG,» and higher Frobenius-Schur indicators

Let Irr(G) and IBr,(G) denote the set of irreducible complex, resp. irreducible
Brauer characters of G in characteristic p. By 1 € Irr(G), resp. 1 € IBr,(G) we always
mean the trivial character, resp. the trivial Brauer character. Finally, by [-, -] we denote
the usual scalar product on the ring of generalized characters.

For ¢ € N, we put

Jelg) = [{h € GIn* = g}|.

¢ is a class function, and clearly J¢ = 3 -, o1,y ve(X) X, where vg(x) = ‘—g;' > geG x(g°) €
Z (see [5], Chapter 4). We call vy(x) the higher Frobenius-Schur indicator of x for ¢ # 2.
By ([5], Theorem 4.5), we have v5(x) = —1,0, or 1 for x € Irr(G). But for I # 2, the
situation turns out to be more subtle and in fact, there is even no absolute bound for
ve(x) (see [5], Problems 4.9).

For a generalized character ¢ we extend the definition of higher Frobenius-Schur

indicators by putting
1
n) = > w(g) =1

geG
where (¥ = ¢(g%) for all g € G. Finally, for a Brauer character ¢ € IBr,(G), we always
denote by ®, the projective indecomposable character of G' associated to ¢. Further-
more, 1g denotes the trivial character in characteristic p and 0 as well, and we shortly

write ®; for ®1,. Finally, for a character x, we put x° = X|@p,.



In ([11], Lemma 3), Murray proved that ¢ € IBry(G) occurs in the Brauer charac-
ter of the involution module over an algebraically closed field of characteristic 2 with

multiplicity v2(®,). His proof works not only for G, but also for all G)pn.

Theorem 2.1 If Apn is the complex character of CGpn with n € N, then

H
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A= Y v (OX°

x€lrr(G) p€IBry(G)

where

In particular, vyn () is the multiplicity of ¢ in the p-Brauer character of kGyn, hence

vpn (Py) € Ng and vpn (P1) > 0.

Proof: By definition of kGn, we have Apn(g) = |Gpn N Ci(g)| for all g € G. Note that
the map < : Gy — Gy defined by ¢(g) = ¢g”" is a bijection for any n € N. If g € G,
then for any h € G such that h?" = g, the p/-part hy = gz%” is uniquely determined by g
and (hy)P" = 1. Hence hyn € Gpn NCg(g). On the other hand, for any = € Gyn N Ci(g),
we have (m(gp/)z%")pn = gp. So it follows that |Gpn N Ci(g)| = |[{h € G | *" = g}| if
g€ Gy. From [{he€ G| " =g} = > xenm(c)) Yo (X)X we conclude that

o

Ajn = X @) Yo (X)X
- erlrr(G)) Z@GIBrp(G) Vpn (X)dXSOSD
ngeIBrp(G) vpn (D) ¢p-

Finally, we have to prove the upper bound for vy (¢,). Since vpn(¢,) is the multiplicity

of p in Ajn, we obviously have vpn(¢y) < vpe(9y) for all n € N.

vpe(Ry) = ﬁ 2 gec Dy (g"")
= @ 2 4¢G, Cu(9”) + 5 24\, Py (g7")
= do1e + G 2 gea\G, D, (g"")
= Oplg + ﬁ deG\Gp/ D, (g"")

IG|—1Gyrl
Op1e + —1ar— Pe(1)

IN

Finally, vpn(®1) # 0 since kGp» is a permutation module. O

The following immediate consequence of Theorem 2.1 generalizes ([5], Corollary 4.6).



Corollary 2.2 Ift is the number of elements of order p in G, then
Ltt= > »00x(),
x€lrr(G)

Proof: By Theorem 2.1, we have 1+t = [Gp| = >_, cpprcy Yo (X)X (1). O

Note that for n € N and g € G, we have Apn(g) = |Ca(g)pn|. Thus the class
function defined by g — |Cg(g)pn| is a Brauer character, by Theorem 2.1. In general,
dpn is not a character, but a generalized character. Furthermore,

ICa(@ml = Y vm(®o)p(g)
@€IBr,(G)
for g € G-
In a first step to understand the structure of kG,», we need to know more about the

higher Frobenius-Schur indicators.

Proposition 2.3 For a projective indecomposable character ® of G and all n € N, we

have vyn (®) = [®, 1] mod p. In particular, vyn (®) = v,(P) mod p.

Proof: By ([5], Problems 4.7), we know that ®" — ®®") = p" for some character
p, hence [@P" 1] = [®P") 1] mod p. Since vpn (®) = [®P") 1], it suffices to show that
[®P",1] = [®,1] mod p. Using the p-modular system (K, R,k = R/p), we get

[®P" 1] = ﬁdeG o (g) = ﬁZgEGPI " (g)
= 4 T, @) mod o
= ﬁ deGp/ ®(g) mod p
= [®,1] mod p.
Thus [®P",1] = [®,1] mod p N Z = pZ; i.e., [®P",1] = [®, 1] mod p. 0

Theorem 2.4 If G is a group of even order, then 2 | von(®1) for all n € N.

Proof: By Theorem 2.1, we have }_ g, ) V2r (®y) (1) = [Ganl.
If S = G\ Gan, then for all z € S, we have x # ! € S. Thus 2 | |S|. Since
|G| = |Gan| +15|, it follows that 2 | |G2»|. Furthermore, again by Theorem 2.1, von(®,,)

is a non-negative integer, and from @, = ®z we deduce that von (D) = von (Py,).
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According to Fong’s lemma ([15], Theorem 2.31), we have 2 | ¢(1) for 1 # p = €
IBra(G). Thus

|G2n‘ - Z@EIBrQ(G) Van ((I)QO)SO(I)
= von(P;) mod 2

and the assertion follows since 2 | |Gan|. O

Note that Theorem 2.4 does not hold true for ®, with ¢ # 1g, and in the case p

odd, also not for ®;.

Example 2.5 a) Let ¢ = @ € IBry(G) be a real valued Brauer character of 2-defect 0
where 2 | |G|. Then ®, = &, € Irr(G). Hence |v5(®P,)| = 1. Acually, vo(®,) = 1, by
([3], Proposition 1.1).

b) Let p = 3 and G = S3. One easily computes ®; = 1 + x with x(1) = 2. It follows
v3(21) = § X geq ®1(9°) = § Lyec(l +x(¢*) = 5B +3+3+1+1+1) =2, O

Theorem 2.4 has an interesting consequence for the decomposition matrix D = (d,.,)
(see Corollary 2.7). In order to state it we need the following result which can be deduced
from a paper of Quillen [16], and Thompson [19] as well. For the readers convenience,
we present a proof which already appeared in the unpublished thesis [21] of the second
author. In order to state and prove it we use again a p-modular system (K, R,k = R/p)

where p € p = 7R. Furthermore, let : R — R/p = k be the natural epimorphism.

Lemma 2.6 Let V be a KG-module with a non-degenerate G-invariant symplectic bi-
linear form b(-,-). Then V' has an RG-lattice M, and there exists a chain of kG-modules
0 C R C M such that M/R and R (latter if not 0) carry non-degenerate G-invariant

symplectic bilinear forms.

Proof: Let N be an RG-lattice of V, in particular N ®p K = V. Multiplying the

bilinear form by a suitable scalar we may assume that
b(N,N)C R, but bN,N)ZrR.

We put
N={v|veV, b N)CR}



Let ny,...,n: be free generators of the free f-module N. Since V = NK and V 2 V*,
there are v1,...,v; € V such that b(vi,n;) = ;5. Thus vy,...,v; are free generators of
N as an R-module which shows that N is an RG-lattice of V. Let M be a maximal

element in the set
{N"| NC N'CN, N'an RG-module, b(N',N') C R}.

Note that M exists since N is a noetherian RG-module. We define a G-invariant sym-

plectic k-bilinear form c(-,-) on M = M/mM by

for m,m’ € M. Clearly, c is well defined. Since b(M, M) € 7R, the radical R = rad.(M)
of ¢ is a proper kG-submodule of M. Thus M /R carries a non-degenerate G-invariant
symplectic bilinear form.

In the case R # 0 we show that also R carries a non-degenerate G-invariant sym-
plectic bilinear form. Note that U = {m | m € M,b(m, M) C «R} is the preimage of R
in M. Suppose that b(U,U) C m2R. Hence b(r U, 771U) CR. Since N C M C 7~ 'U,
we have b(ﬂflU, M) C R. Tt follows M C U C N and by maximality of M, we
obtain M = 77U, hence U = 7M which means that R = 0 and we are done.

Thus b(U,U) C 7R, but b(U,U) € 7?R. On R = U/rM we define a G-invariant
symplectic bilinear form d(-,-) by

du+7M,u' +7M) =7=1b(u,u)

for w,u’ € U. The bilinear form d is well defined since

d(xM,U) = 7 b(x M, U) = b(M,U) = 0.

To finish the proof it remains to show that d is non-degenerate. The preimage of the

radical radg(U) of d in R is
Up = {u|ueUbuU)Cr*R}.

Clearly, M C Uy, hence M C 7~ 1Uy. Now b(m Uy, 7~ 'Up) C R implies 7~ Uy C N.

The maximality of M forces 771Uy = M. Thus radyR = 0, and the proof is complete. O



Corollary 2.7 If p=2 and 2 | |G|, then

(i) 2] dy1g for x =X € Irr(G) with va(x) = —1.
(i) 2| > dyi1, where the sum runs over all x =X € Irr(G) with va(x) = 1.

Proof: (i) The condition vp(x) = —1 says that the module V' affording x carries a
non-degenerate G-invariant symplectic form. By Lemma 2.6, V has a lattice M such
that its reduction M = M/pM has a submodule R where R (if not 0) and M /R have
a non-degenerate G-invariant symplectic bilinear form. Since the trivial module does
not allow a non-zero G-invariant symplectic bilinear form, its multiplicity in M must be

even according to the argument at the end of chapter 2 in [23].
(ii)
q)l = Z XmcX + Z XmcX + Z dxlc (X +Y)
X=X

X=X X#X

va(x)=1 va(x)=-1 vo(x)=0
Applying (i) we get
V(@) = Z dy1, mod 2.

X=X
v (x)=1

Since 2 | v2(®1), by Theorem 2.4, the assertion follows. O

Example 2.8 For G = SL(2,5), we have the following numbers in agreement with

Corollary 2.7:
da,/ 11101 0 0 0 2

wmix) 11111 -1 -1 -1 —1

Recall that vo(x) € {0,1} for x € Irr(G) of 2-defect zero. Actually va(x) = 0 if x is

not real-valued and otherwise v(x) = 1 (see Example 2.5).

Proposition 2.9 Let p be any prime dividing |G| and n € N. If x € Irr(QG) is of p-defect

Gyl
zero, then 0 < v (x) < x(1) = g7 x (L) < x(1) = x(1)y-

Proof: By Theorem 2.1, we have

|G‘ - ’Gp’|

0 < wpn(x) < vpe(x) < x(1) T



since x = ®, for ¢ # 1g. Furthermore, |G|, = x(1)p, by ([15], Theorem 3.18), and
|Gy | |G|, by ([2], Proposition 15.9). Thus

|G| — |Gp" _ |Gp”
XM= =X = x(Wy al, < X(1) = x (1)

Example 2.10 Let G = Cy x A4. One easily checks that for p = 3, the group G has
two irreducible characters x and v, both of degree 3, of 3-defect zero and self-dual. For
one of the characters, say x, we have v3(x) = 2, for the other one v3(1)) = 0. This
shows in particular that the lower and upper bound in Proposition 2.9 are sharp, and

vpn (x) = 0 for p odd does not imply x # X. O

For the reader’s convenience we recall the following well-known result (see for in-

stance [17] or [7]).
Lemma 2.11 If each g € Gy is centralized by all p-elements of G, then
G = 0y (G) x Op(G).

Proof: For a prime g # p, let @ be a Sylow ¢-subgroup of G and let P be a Sylow
p-subgroup. Clearly,

N=(Q%|ge€Gandq#p)

is a normal subgroup of G and N satisfies the assumption of the lemma. If N < G, then,
by induction, N = O, (N) x O,(N). Since G/N is a p-group and centralizes O, (N) we
are done. Thus we may assume that N = G. Now P is central in GG, hence a normal
subgroup. By the Schur-Zassenhaus Theorem, P has a complement U in G, which is

centralized by P, and the proof is complete. O

For the next result, recall that p® is the largest p-power dividing |G]|.
Theorem 2.12 The following conditions are equivalent.
(i) vpa(®y,) =0 for all 1¢ # ¢ € IBr,(G).

(ii) G = 0y(G) x 0,(G).



Proof: (i) = (ii) Recall that

1Cc(9)pe| = Z vpa (o) 0(9),

p€IBryp(G)

for all g € G,y. Thus, by the assumption in (i), we get
|Gpa| = vpa(P1) = [Ci(9)pel,

for all g € G,y. Hence each p’-element of G is centralized by all p-elements of G and the
assertion follows by Lemma 2.11.

(ii) = (i) For 1g # ¢ € IBry(G) we have

vpe(Pp) = ﬁ deG q)tp(gpa) = | Op(G)|ﬁ deopl(G) (pcp(gpa)

= 10u(G)lir Xgeo, (@) Pe(9) = 0p(G)] [@4, 16] = 0.

Proposition 2.13 Suppose that p | |G|. If vp(®,) = 0 for all 1¢ # ¢ € IBry(G), then

G has a non-trivial central p-subgroup. In particular, O,(G) # 1.

Proof:  As in the previous proof we have [Ca(9)p| = > ocrp:, () Vp(Pe)@(g), for all
g € Gy. Thus, by the assumption,

(%) [Ca(9)p| = vp(P1),

for all g € Gy, and in particular |Cq(g),| = |Gp| (taking g = 1). Note that |v,(P1)] # 1,
since p | |G|. If P is a Sylow p-subgroup of G, then Py = Q;(Z(P)) # 1. Thus Py cen-
tralizes P, and by (), all Sylow g-subgroups of G for ¢ # p. This shows that Py < Z(G)

and the proof is complete. a

3 Groups whose irreducible characters all have non-zero

Frobenius-Schur indicators

Suppose that G satisfies the following two conditions:

(i) All irreducible complex characters are real-valued, hence v2(x) # 0 for all x €

Irr(G).



(ii) For all nonlinear x € Irr(G), we have vo(x) = —1.

In [22], the second author proved that these conditions force G to be a 2-group.
For instance, the quaternion group (Js and elementary abelian 2-groups satisfy both
conditions. In the following we prove an analogous result for higher Frobemius -Schur
indicators, by using the classification of finite simple groups. In order to prove Theorem

3.4 we need the following observations.

Lemma 3.1 Let G be a g-group with q¢ # p. Then vy(x) =0 for all 1g # x € Irr(G).

Proof: We have I/p(X) = ﬁ deG X(gp) = |7C1¥| ZgGG X(g) = [X, 1g] = 5X1G‘ O

Lemma 3.2 If G is an abelian p-group, but not elementary abelian, then there exists a

linear chracter x with v,(x) = 0.

Proof: Since G is not elementary abelian, there exists a normal subgroup N such that
G = (gN) is cyclic of order p?. Let x € Irr(G) with Ker y = N and x(gN) = € where €

is a primitive complex p?-th root of unity. If w = €P, then

Lemma 3.3 If G has a p-block B which is not of mazrimal defect, then G has a non-

linear irreducible character x with vp(x) > 0.

Proof: Clearly, all x € Irr(B) are non-linear since the defect of B is not maximal. By
Theorem 2.1, we have 1p(®y) > 0 for all ¢ € IBry(G). Writing @, = >, cpy(5) Ay X

we obtain

0 <vp(Py) = Z dyop(X)-
x€lrr(B)

Thus there exists x € Irr(B) with v,(x) > 0.

Theorem 3.4 Let G be a finite group and p be an odd prime. Then G satisfies
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(i) vp(x) # 0 for all x € Irr(G) and
(ii) vp(x) <0 for all nonlinear x € Irr(G)

if and only if G is an elementary abelian p-group.

Proof: Clearly, if G is an elementary abelian p-group, then all irrecucible characters y
are linear and satisfy v,(x) = 1. Thus G satisfies both conditions. Conversely, let G be a
group satisfying (i) and (ii). Clearly, any factor group of G also satisfies the conditions.
In order to prove that G is an elementary abelian p-group we use induction on the order
of G. Let N be a minimal normal subgroup of G. Then, by induction, we get that
G/N is an elementary abelian p-group. Furthermore N is the unique minimal normal
subgroup, since otherwise G is (up to an isomorphism) a subgroup of G/N; x G/Ns

which is an elementary abelian p-group, by induction. Now we may write
N=5Sx---x8 with §=525; foralli.

Case pt|S|:

Thus G = O, P where P is an elementary abelian p-group. Suppose that there exists
x € Oy with |Cg(z)|, < |P|. Applying ([20], Theorem 1), we get that G has a p-block
of non-maximal defect, contradicting Lemma 3.3. Thus p { |2%| for all p’-elements = and

we obtain

G =0,(G)x P,

by [17]. According to Lemma 3.1 we get O,/ (G) = 1 and we are done.

Case p | |N]|:

Thus p | |S|. We first suppose that the simple group S is non-abelian. Since all blocks
of G have maximal defect by Lemma 3.3, all p-blocks of S have maximal defect. We
prove that this is not true. If S is a group of Lie-type, then S has p-blocks of defect
zero, by ([10], Theorem 5.1). If S = A,,, then S has again a p-block of defect zero in
the case p > 5, by ([4], Corollary 1). In the case that p = 3 there exists a p-block of
defect d < %51, by ([1], Theorem 2), except S = A7. But Ay has a 3-block of defect 1.
If S is sporadic, then S has a p-block of defect zero, by ([4], Corollary 2) unless p = 3
and S = Suz or S = Cos. In the two exceptional cases there exists a 3-block of defect
1. Thus S must be cyclic of order p and G is an extension of an elementary abelian p-

group by an elementary abelian p-group. Clearly N = G’, since N is a minimal normal
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subgroup and G is not abelian, by Lemma 3.2. Furthermore, since the action of the
p-group G/N on the p-group N is irreducible, we get |N| = p. Since N is the unique
minimal normal subgroup of G, we see that Z(G) = N or N < Z(G) and |Z(G)| = p?.

Thus we have to consider the following two cases:
(a) G' = ®(GQ) = Z(G), i.e., G is extraspecial,
(b) G' = ®(G) < Z(G) and |Z(G)| = p?. (Such groups exist.)

First we consider the case (a): If x € Irr(G) with x(1) # 1, then there exists p €
Irr(A) such that y = u& where A is a maximal normal subgroup of G and A\ = u|y # 1x
(see [6], Kap. V, Satz 16.14)).

It follows that

1
vp(x) = |G‘Zx |G|Zx >Té|) Gol+ Y A

g€G,ord(g)=p?

By assumption, we have v,(x) < 0, which forces that ) sec , A(gP) is a real negative
ord(g)=p
number and

Y A > Gyl

geaq
ord(g)=p?

Since G’ is cyclic and p > 2, G is a regular p-group, by ([6], Kap. III, Satz 10.2). In
particular, Q;(G) = {g € G | ¢ = 1}, by ([6], Kap. III, Hauptsatz 10.8). It follows

(@) =1Gpl < [ s M) < Xgearane) M) <G/ (G

ord(g)=p
= [2(G)/(G)] <[ (G)/Q(G)] = [u(G)| -1

where the last inequality comes from ([6], Kap. III, Satz 10.7). Thus we have a contra-
diction.

Dealing with the case (b), we choose A € Irr(Z(G)) with A|xy # 1x. By ([6], Kap.
V, Satz 6.3), the character A has an extension p to a maximal normal abelian subgroup
A of G. Note that not all irreducible constituents of u& can be linear since otherwise
N is in the kernel of €. Thus, there exists a non-linear irreducible constituent y of &

and we may argue as in (a) for y to get the final contradiction. a
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