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Abstract

The structure of binary self-dual codes invariant under the action of a cyclic group
of order pq for odd primes p # ¢ is considered. As an application we prove the
nonexistence of an extremal self-dual [96, 48, 20] code with an automorphism of order
15 which closes a gap in [2].

Index Terms: Self-dual codes, doubly-even codes, automorphisms

1 Introduction

Let C' = C be a binary self-dual code of length n and minimum distance d. A binary code
is doubly-even if the weight of every codeword is divisible by four. Self-dual doubly-even
codes exist only if n is a multiple of eight. Rains [9] proved that the minimum distance d
of a binary self-dual [n, k, d] code satisfies the following bound:

d<4|n/24] +4, if n#22 (mod 24),

d<4|n/24] +6, ifn=22 (mod 24).

Codes achieving this bound are called extremal. If n is a multiple of 24, then a self-dual
code meeting the bound must be doubly-even [9]. Moreover, for any nonzero weight w
in such a code, the codewords of weight w form a 5-design [1]. This is one reason why
extremal codes of length 24m are of particular interest. Unfortunately, only for m = 1



and m = 2 such codes are known, namely the [24,12,8] extended Golay code and the
[48,24,12] extended quadratic residue code (see [10]). To date the existence of no other
extremal code of length 24m is known. For n = 96, only the primes 2,3 and 5 may divide
the order of the automorphism group of the extremal code and the cycle structure of prime
order automorphisms are as follows

p | number of p-cycles | number of fixed points
2 48 0

1
3 30, 32 6,0 (1)
5 18 6

(see Theorem, part a) in [2]). We would like to mention here that in part b) of the Theorem
(the case where elements of order 3 are acting fixed point freely) four orders of possible
automorphism groups are missing, namely 15, 30, 240 and 480. The gap is due to the fact
that the existence of elements of order 15 with six cycles of length 15 and two cycles of
length 3 are not excluded in the given proof. We close this gap by proving

Theorem 1 A binary doubly-even [96,48,20] self-dual code with an automorphism of or-
der 15 does not exist.

This note consists of three sections. Section 2 is devoted to some theoretical results on
binary self-dual codes invariant under the action of a cyclic group. In Section 3 we study
the structure of a putative extremal self-dual [96, 48, 20] code having an automorphism of
order 15. Using this structure and combining the possible subcodes we prove Theorem 1.
In an additional section, namely Section 4, we prove that an extremal self-dual code of
length 96 does not have automorphisms of type 3-(28,12). This assertion is used by other
authors but no proof has been published so far.

2 Theoretical results

Let C be a binary linear code of length n and let o be an automorphism of C' of order r
where 7 is odd (not necessarily a prime). Let

c=M. .. 0 (2)

be the factorization of ¢ into disjoint cycles (including the cycles of length 1). If I; is the
length of the cycle ©; then lem(ly,...,l;,) = r and l; divides r. Therefore [; is odd for
i=1,....mand 1 <[; <r.

Let F,(C) ={v e C:vo=v}and

E,(C)={veC:wt(v|Q)=0 (mod 2),i=1,...,m},
where v|Q; is the restriction of v on ;. With this notation we have the following.

Theorem 2 The code C is a direct sum of the subcodes F,(C) and E,(C).



Proof: We follow the proof of Lemma 2 in [4]. Obviously, F,(C) N E,(C) = {0}. Let
veCand w=1v+0()+- -+ 0" "L(v). Since w € C and o(w) = w we get w € F,(C).
On the other hand, wt(o7 (v)|q,) = wt(v|g,) for all i = 1,2,...,m and j > 1. Hence
o(v) + -+ 0" 1(v)|q, is a sum of an even number of vectors of the same weight. Thus
wt(o(v) + -+ + 0" L(v)]g,) is even for i = 1,2,...,m. It follows that u = o(v) +--- +
o" 1(v) € E,(C). Sov = w+u € F,(C)+E,(C) which proves that C = F,(C)®E,(C). O

Let F§ be the n-dimensional vector space over the binary field Fo, and 7 : F,(F%) — F5*
be the projection map, i.e., (w(v)); = v; for some j € €; and i = 1,2,...,m. Clearly,
v € F,(C) iff v € C and v is constant on each cycle.

Theorem 3 If C' is a binary self-dual code with an automorphism o of odd order then
Cr = w(Fy(C)) is a binary self-dual code of length m.

Proof: Let v,w € Fy(C). If (-,-) denotes the Euclidean inner product on Fj then
(v,w) = (m(v), 7(w)) = 0 since [; is odd for all .. Hence C; is a self-orthogonal code. If
u € C+ and v/ = 771 (u) then (v/,v) = (u,7(v)) = 0 for all v € F,(C). Furthermore,
(W vy =30 (Wq,, vla,) = 0 for all v € E,(C) since ' is constant on ; and wt(v|q,) is
even. Thus v/ € C*+ = C. Hence u’' € F,(C) and therefore v = 7(u') € C, which proves
that Cj is a self-dual code. O

Corollary 4 Let C be a binary self-dual code of length n = cr + f and let o be an
automorphism of C of odd order r such that

J:Ql'--QCQC+1-~'Qc+f (3)

where Q; = ((i — )r+1,...,ir) are cycles of length r fori=1,...,¢c, and Qeqi = (cr+1)
are the fixed points for i = 1,...,f. Then Fy(C) and E,(C) have dimension (¢ + f)/2
and c(r — 1)/2, respectively.

Proof: Clearly, m = ¢+ f is the number of orbits of o. Therefore dim F,,(C') = dim C; =
(c+ f)/2. Hence dim Ex(C) =n/2 — (c+ f)/2=(cr+ f)/2—(c+ f)/2=c(r—1)/2. O

If o is of prime order p with ¢ cycles of length p and f fixed points we say that o is of
type p-(c, f).

2.1 Connections with quasi-cyclic codes

For further investigations, we need two theorems concerning the theory of finite fields and
cyclic codes. Let r be a positive integer coprime to the characteristic of the field F; of
cardinality [, where [ is the power of a prime. Consider the factor ring R = F;[z]/(z" — 1),
where (2" — 1) is the principal ideal in F;[z]| generated by =" — 1. Let

a' = 1= fo(z) fi(z) ... fs(x)



be the factorization of " — 1 into irreducible factors f;(x) over F; where fo(z) = = — 1.

Let I; = (;T—&b be the ideal of R generated by ‘”T(;% for j =0,1,...,s. Finally, by e;(z)
J J

we denote the generator idempotent of I;; i.e., ej(x) is the identity of the two-sided ideal

I;. With these notations we have the following well-known result.

Theorem 5 (see [5])
(i) R=IhoL @ - I,.
(ii) I is a field which is isomorphic to the field Fiaco(s;@y for j =0,1,...,s.
(iii) ei(x)ej(x) =0 fori # j.
(i) 3j—pei(z) = 1.

According to [7] there is a decomposition

" —1=go(x)g1(z) - gm(z)h1(z)h](x) - - he(x) D} (),

where s = m + 2t and {g0,91,--.9m, 1, h3, ..., he, b} = {fo, f1,..., fs}. Furthermore,
hi(z) is the reciprocal polynomial of h;(x), h} # h; for i = 1,...,t and g¢;(x) coincides
with its reciprocal polynomial where go(x) = fo(x) = = — 1. Finally, we denote the field
r_1 . T—1 ) L T—1 *

(;fj(x)> by G; for j = 0,1,...,m, <ﬁj(z)) by H; for j = 1,...,t, and <%> by H} for
j=1,...,t

To continue the investigations, we need to prove some properties of binary linear codes
of length ¢r with an automorphism 7 of order r which has ¢ independent r-cycles. If C is
such a code then C is a quasi-cyclic code of length ¢r and index c¢. Next we define a map

¢ : FS" — R by

o(v) = (vo(z),v1(x), ..., ve—1(x)) € RS,

where v;(z) = Z;;(l] vij2? and (v, ..., Vic—1) = v|g,. Clearly, ¢(C) is a linear code over
the ring R of length c. Moreover, according to [7], we have ¢(C)* = ¢(C+) where the dual
code C+ over Ty is taken under the Euclidean inner product, and the dual code ¢(C)* in
R€ is taken with respect to the following Hermitian inner product:

c—1
(u,v)y = Zuﬁi € R, v =vi(x™) = wi(a" ).
=0

In particular, the quasi-cyclic code C' is self-dual if and only if ¢(C) is self-dual over R
with respect to the Hermitian inner product.
Every linear code C over the ring R of length ¢ can be decomposed as a direct sum

m t
C= (D) e D)oy,
i=0 j=1
where C; is a linear code over the field G; (i = 0,1,...,m), C;- is a linear code over H;
and CJ’»’ is a linear code over HY (j =1,...,¢).



Theorem 6 (see [7]) A linear code C over R of length c is self-dual with respect to the
Hermitian inner product, or equivalently a c-quasi-cyclic code of length cr over Fy is self-
dual with respect to the Fuclidean inner product, if and only if

C = (Q% Ci) ® (G?(CJ" @ (C))1),
i= Jj=

where C; is a self-dual code over G; for i = 0,1,...,m of length ¢ (with respect to the
Hermitian inner product) and CJ’~ is a linear code of length ¢ over H; and (C;»)l is its dual
with respect to the Euclidean inner product for 1 < j <t,.

2.2 The case r = pq

We consider now the case r = pq for different odd primes p and ¢ such that 2 is a primitive
root modulo p and modulo g. The ground field is Fy. Then

2= 1= (0= DQy@)Q)Qu(x) = (1 +2)(1+ 2+ a1+ o+ +a1)Qu(2)

where Q;(z) is the i-th cyclotomic polynomial. Moreover, both @Q,(z) and Q,(x) are
irreducible over Fy since 2 is primitive modulo p and modulo ¢ as well. Finally, if

Qr(z) = g3(x) ... gs(x)ha(2)h1(2) - - - he() i ()

is the factorization of the r-th cyclotomic polynomial into irreducible factors over o, then
these factors have the same degree, namely - o) _ (p 71)@71), where ¢ is Euler’s phi

—242t T s—242t
function.
Let
o = Ql e QCQC+1 e Qc+tch+tq+1 e Qc+tq+thC+tq+tp+l e Qc—}—tq-i-tp—‘rf (4)
where

Q;, = ((i —1)r+1,...,ir) are cycles of length pg fori =1,...,¢,

Qeri =(er+ (i —1)g+1,...,cr +iq) are cycles of length g for i =1,...,%,,

Qeytgri = (er+tgq+(i—1)p+1,...,cr+teq +ip) are cycles of length p fori = 1,...,1p,
and Qcyy,41,+i = (c+ 1t +tp + i) are the fixed points for i =1,..., f.

Let E,(C)* be the shortened code of E,(C) obtained by removing the last t,q+t,p+ f
coordinates from the codewords having 0’s there. Let Cy = ¢(E(C)*). Since E;(C)* is
a binary quasi-cyclic code of length cr and index ¢, Cy is a linear code over the ring R of
length c. Moreover

Cy = (P Mi) & (DM} & M),
=0 j=1



where M; is a linear code over the field G;, i =1,...,m, MJ' is a linear code over H; and
M]’/ is a linear code over H;, j =1,...,t. For the dimensions we have

dim E;(C)* = dimCy =
(p— 1) dim My + (¢ — 1) dim Mo + B (5™ dim M; + 3 (dim M) + dim MY)).
Since E,(C)* is a self-orthogonal code, Cy is also self-orthogonal over the ring R with
respect to the Hermitian inner product. This means that M; are self-orthogonal codes of
length ¢ over G; for ¢ = 1,...,m (with respect to the Hermitian inner product) and, for
1 <j <t, we have M ]’-’ C (M ]’)l with respect to the Euclidean inner product. This forces
dim M; < ¢/2 fori=1,2,...,s and dim M} + dim M} < c. It follows that

n (p—1)(qg— 1)((3 _ 9 e = c(pg —1) (5)

. * ¢ ¢
dim E;(C)" < (p= D5+ (¢ - Vg +——5 5 2 2

3 Self-dual [96, 48, 20] codes and permutations of order 15

Let C be a binary extremal self-dual [96,48,20] code with an automorphism o of order
15. We decompose ¢ in a product of ¢ independent cycles of length 15, t5 cycles of length
5, t3 cycles of length 3 and f cycles of length 1. Then ¢° and ¢3 are automorphisms of C
of type 3-(bc + ts, 5ts + f) and 5-(3¢ + ts, 3t3 + f), respectively. According to (1),

3c+t5=18, 3ts+ f=6, He+t3=230o0r 32, 5ts+ f =6 or 0.

This leads to
ts =0, ¢=6, (t3,f)=(2,0) or (0,6).

Lemma 7 If (t3, f) = (2,0) then Cr is the extended [8,4,4] Hamming code. If (ts, f) =
(0,6) then Cyr is the self-dual [12,6,4] code.

Proof: Let C be a binary extremal self-dual [96, 48, 20] code and
o = 2102203040506 s,

be its automorphism of order 15, where Q; = (15(¢ — 1) + 1,...,15¢) for i = 1,...,6,
Q7 = (91,92,93), Qs = (94,95,96). Hence C; is a binary self-dual code of length 8. If
= (z1,...,18) € Cy then wt(n~1(x)) = 15(x1 +- -+ 26) + 327 + 323 = 3wt(z) (mod 4).
Since C' is a doubly-even code, wt(z) = 0 (mod 4) and C, must be a doubly-even code,
too. The only doubly-even self-dual code of length 8 is the extended [8,4,4] Hamming
code. Its automorphism group acts 2-transitively on the code, so we can take any pair of
coordinates for the two 3-cycles.

In the case f = 6 C; is a self-dual code of length 12 and so its minimum weight is at
most 4. If x = (z1,...,212) € Cy then

wt(rm 1 (x)) = 15(xy + -+ + x6) + 27 + - - - + 212 = 15a 4+ b > 20.

@ b




Hence a > 1 and if a = 1 then b = 5. It follows that C; is a self-dual [12, 6, 4] code with a
generator matrix in the form (I D). The only such code is d, (see [10]). For the structure
of df, we use the terms from [4]. This code have a defining set which means that its co-
ordinates can be partitioned into duo’s {l1,l2}, {ls,la}, {l5,l6}, {l7,18}, {l9,l10}, {l11, 12},
such that its 15 codewords of weight 4 are the vectors with supports {loi—1,l2i,l2j—1,l2;}
where 1 < ¢ < j < 6 (clusters). Since C; does not contain a codeword x of weight 4
with (a,b) = (1,3) or (0,4) it turns out that {l1,l3,l5,17,l9,l11} = {1,2,3,4,5,6} and
{la, 14, 16,13, 110,112} = {7,8,9,10,11,12}. As a basis for the code we can take the clusters
{liy i1, live, Liy7} for i =1,2,...,5, with the d-set {1,7,8,9,10,11,12}. Hence C, has a
generator matrix of shape (Ig|Is+ Js) where Ig is the identity matrix and Jg is the all-ones
matrix of size 6. O

We consider both possibilities for the structure of ¢ simultaneously. Since

P —1l=(@-1DQ+z+2)Q+z+22+23+2Y) QA+ 2+ 2 1+ 23+ ),
Qs(2) Qs(z) h(z) h*(x)

we obtain
dim E,(C)* = 2dim M; +4 dim M, +4(dim M’ + dim M").
N — N —

-~

<3 <3 <6

According to the balance principle (see [2], [5] or [10]), the dimension of the subcode of C
consisting of the codewords with 0’s in the last six coordinates, is equal to 42 = 48 — 6.
Hence if f = 6 then dim E,(C)* = 42. In the other case, the dimension of the subcode
of Cr = eg, consisting of the codewords with 0’s in the last two coordinates, is 2 and
therefore dim E,(C)* = 40. It follows that

dim M; =2 or 3, dim Ms = 3 and dim M’ + dim M" = 6.

This means that
Co=M&MaeM oM,

where M is a Hermitian self-orthogonal [6,2, > 2] code in the case f = 0 and a self-dual
[6,3,> 2] code in the case f = 6 over the field G; = F4, My is a Hermitian self-dual
6,3, dz] code over Gy = F1g, M is a linear [6,%’,d'] code over H = Fig and M" = (M')*
is its dual with respect to the Euclidean inner product. If v is a codeword of weight ¢
in Mo, M' or M" then the vectors ¢~!(v), ¢~ (zv), ¢~ (2?v) and ¢! (z3v) generate a
binary code of dimension 4 and effective length 15¢. It is a subcode of C' and therefore its
minimum distance should be at least 20. Since binary codes of length 30, dimension 4 and
minimum distance > 20 do not exist [3], d2 = 3 or 4, d’ > 3 and the minimum distance of
M" is at least 3. In the following we list the three possible cases for M’ and M" where

e=e(x)=a+2°+ 2+ a0 +at +ad 2 2

is the identity of the field H = {0, e, ze, 2%, ..., z'%e}.



1. M’ is an MDS [6,2,5] code and M" is its dual MDS [6, 4, 3] code. It is well known
that any MDS [n,k,n — k + 1] code over [, is an n-arc in the projective geometry
PG(k — 1,q). There are exactly four inequivalent [6,2,5] MDS codes over Fig [6]
(their dual codes correspond to the 6-arcs in PG(3,16)). We list here generator
matrices of these codes:

e 0 e e e e e 0 e e e e
0 e e ze z%e ze 0 e e ze x%e zte

e 0 e e e e e 0 e e e e
0 e e ze 2% z'e 0 e e ze z3% zxlle
2. M'" and M" are both MDS [6, 3, 4] codes. According to [6], there are 22 MDS codes

with the needed parameters over Fig (they correspond to the 6-arcs in PG(2,16)).
We consider generator matrices of these codes in the form

0 0 e e e
e z%e x%e |, a;€{1,2,...,14}, 1 =1,2,3,4.

e x%e x%e

Note that a; > 1 for i = 1,2,3,4 since the minimum distance of M’ is 4. We
calculated the weight distributions and the automorphism groups of ¢~1(M’ @ M")
for all 22 codes M’. The results are listed in Table 1. Five of the binary codes have
minimum distance 24, and six of them have minimum distance 20.

Table 1: The [90,24] codes in case 2

(a1,a2,a3,a4) | Ars | A20 | Asa Ass Aso Asze |Aut|
(1,2,2,1) 270 0 | 5400 | 15840 |195345|941400| 1440
(1,2,2,4) 60 | 120 | 2730 | 18480 | 189885 | 950280 | 240
(1,2,2,5) 15 | 30 | 2070 | 17535 | 187815 | 963480 30
(1,2,2,6) 45 | 180 | 1935 | 17505 | 183015 | 975420 90
(1,2,2,8) 45 | 0 | 2580 | 15660 | 188715 | 965040 | 240
(1,2,2,9) 15 | 30 | 2130 | 17355 | 187575 | 965160 30
(1,2,3,1) 30 | 120 | 2430 | 19650 | 192105|937200| 120
(1,2,3,6) - - 2325 116320 | 192585 | 953040 60
(1,2,3,7) - 60 | 1875 17955 | 189465 | 956220 30
(1,2,3,8) - - 2145 | 17340 | 190185 | 956400 30
(1,2,3,12) - 60 | 1965 | 18060 | 187545 | 960120 60
(1,2,4,6) - 60 | 2040 [17910| 187485 | 959400 60
(1,2,5,7) - 90 | 1830 | 18390 | 186405 | 963900 30
(1,2,6,1) 60 | O | 3090 | 17400 | 194205 |941400| 240
(1,2,9,1) 30 [ 120| 2910 | 17250 | 196425|933840| 120
(1,2,12,1) 90 | 360 | 3240 | 23940 | 192825909720 | 720
(1,3,2,6) - - 2325 {16320 | 192585 | 953040 60
(1,3,3,2) - | 180 | 1665 | 18720 | 185625 | 960840 90
(1,3,7,2) - - 2295 | 16830 | 191745 (950040 | 180
(1,3,7,10) - | 180 | 1755 | 18450 | 185265 | 963360 | 360
(1,3,11,8) - - 2730 | 14100 | 197925 (944760 | 600
(5,10,10,5) |450| 0O |14580 | 16200 | 329625 | 507960 | 259200




3. M' and M" are both [6,3,3] codes. We consider generator matrices of M’ in the

form
0 e e

0 0
e 0 e /81 /82 ) ﬁiGH,i:1,2,3,4,
0 e e B3 B

where 8; = zbie, b; € {0,1,...,14}, or B; =0,i=1,2,3,4.

We calculated that there are 18 inequivalent [6,3,3] codes M’ over Fig such that
d(¢~1(M' @ M")) > 20. The weight distributions and the automorphism groups of
¢~ H(M' @ M") for all 18 codes are listed in Table 2. Ten of the binary codes have
minimum distance 24, and eight of them have minimum distance 20.

S OO

Table 2: The [90, 24] codes in case 3

(b1,b2,b3,ba) | Ago | A2a | Azg | Aso Ase | |Aut]
(0,0,0,7) - 1225017640 | 187605 | 960120 | 180
(0,0,2,3) - 1207018060 | 187125 | 963960 | 60
(0,0,2,6) - | 1950 | 18420 | 187605 | 960600 | 30
(0,2,2,9) - 217517670 | 188625 | 957480 | 60
(0,2,3,4) - 1207017730 | 189285 | 958080 | 15
(0,2,3,7) - 1202517865 | 189465 | 956820 | 15
(0,2,3,11) - 1207018030 | 187485 | 962280 | 30
(0,2,3,12) - 1201018210 187725 | 960600 | 15
(0,2,4,7) - 1219016890 | 191925 | 953040 | 30
(0,2,4,13) - 12100 | 17640 | 189165 | 958920 | 60
(0,0,0,2) 90 | 1755 | 18900 | 184545 | 968940 | 90
(0,0,2,5) 30 | 1905 | 18630 | 186585 | 961260 | 30
(0,0,2,9) 30 | 2025 | 18270 | 186105 | 964620 | 30
(0,0,3,5) 30 | 1935 | 18540 | 186465 | 962100 | 30
(0,2,2,3) 60 | 2055 | 18030 | 186225 | 963600 | 30
(0,2,2,5) 60 | 1935 | 18015 | 188265 | 958860 | 30
(0,2,2,8) |180| 1800 | 18630 | 184365 | 962760 | 180
(0,2,4,0) 90 | 1830 | 18630 | 185445 | 964860 | 30

In the following G is the field with four elements and identity
er=z+2*+2' +2° +2" + 28+ 210 + 2!t + 21 4 M,
and G the field with 16 elements and identity
€2 :x+m2+x3+x4+x6+m7+m8+x9—i—xll+x12+x13+x14,

defined in the beginning of this section. Furthermore po = ' + 210 + 26 + 25 + 2 + 1 is
a generator of Ga.

According to [12], there are two Hermitian self-dual [6,3,d > 3] codes over Fig up to
the equivalence defined in the following way: Two codes are equivalent if the second one
is obtained from the first one via a sequence of the following transformations:

e a substitution z — !, t = 2,4, 8;



e a multiplication of any coordinate by x;
e a permutation of the coordinates.

Their generator matrices are

e2 00 0 py pg e2 0 0 e 1} 43
H, = 0 e O ug ,ug e , Hy = 0 e 0 e9 ,u% ug
0 0 e ¥ ep pdd 0 0 e ey S 1y

We fix the M’ & M" part of the generator matrix and consider all possible generator
matrices for the Mo part. Note that even if the matrices generate equivalent codes M» the
codes generated by M’ @& M" & M, may not be equivalent. We consider the two possible
matrices for the My part under the products of the following maps: 1) a permutation
T € S of the 15-cycle coordinates; 2) multiplication of each of the 6 columns by nonzero
element of Fig; 3) automorphism of the field (z — 2, t = 2,4,8). After computing all
possible generator matrices we obtain exactly 675 inequivalent [90, 36, 20] binary codes:
232 from the first matrix H1, and 443 from the second Hy. These codes have automorphism
groups of orders 15 (557 codes), 30 (111 codes), 45 (2 codes) and 90 (5 codes).

Next, we separate both cases.

f=0) Let first add the fixed subcode. According to Lemma 7, the code w(F,(C)) is
equivalent to the extended Hamming [8,4,4] code Hg. As we already mentioned in
the proof of Lemma 7, we can take any pair of coordinates for the 3-cycles. Then
we consider all 6! = 720 permutation of the 15-cycles that can lead to different
subcodes. Only 47 of the constructed codes ¢~ 1(M’' & M" & M) ® F,(C) have
minimum distance d’ = 20 (we list the number of their codewords of weights 20 and
24 and the order of the automorphism groups in Table 3).

Table 3: The [96,40, 20] codes
Asg Aoy |Aut| Asg Aoy |Aut\ Ao Aoy \Aut|
Co6,40,1 | 48735 | 4206590 | 1620 || Coye,40,17 | 47925 | 4216010 | 540 Co6,40,33 | 48045 | 4213610 | 540
Co6,40,2 | 49545 | 4197410 | 1620 || Coe,40,18 | 48105 | 4213730 | 540 Co6,40,34 | 48420 | 4209320 | 540
Coe,40,3 | 47835 | 4217030 | 1620 || Coe,40,19 | 48600 | 4207760 | 540 Co6,40,35 | 47760 | 4216160 | 540
Co6,40,4 | 47940 | 4214600 | 540 Coe,40,20 | 48420 | 4208120 | 540 Co6,40,36 | 48780 | 4204760 | 540
Co6,40,5 | 48405 | 4209530 | 540 Co6,40,21 | 47325 | 4220810 | 540 Co6,40,37 | 48510 | 4209500 | 540
Coe,40,6 | 47805 | 4214810 | 540 Co6,40,22 | 47595 | 4216070 | 540 Co6,40,38 | 47460 | 4217720 | 540
Co6,40,7 | 47205 | 4222490 | 540 Coe,40,23 | 48345 | 4209650 | 540 Co6,40,39 | 48330 | 4210100 | 1080
Co6,40,8 | 48690 | 4204820 | 540 Co6,40,24 | 47925 | 4213370 | 540 Co6,40,40 | 47415 | 4221950 | 1080
Coe,40,0 | 47265 | 4220450 | 540 Co6,40,25 | 47835 | 4215110 | 540 Co6,40,41 | 48315 | 4210550 | 540
Co6,40,10 | 47580 | 4216520 | 540 Coe,40,26 | 47790 | 4214780 | 540 Co6,40,42 | 47490 | 4218740 | 540
Co6,40,11 | 47565 | 4219370 | 1080 || Cos,40,27 | 49410 | 4200020 | 540 Co6,40,43 | 49140 | 4201880 | 540
Coe,40,12 | 48255 | 4212110 | 540 Coe,40,28 | 48225 | 4210610 | 540 Co6,40,44 | 48330 | 4212500 | 1080
Co6,40,13 | 48555 | 4207190 | 540 Coe,40,29 | 48360 | 4209920 | 540 Co6,40,45 | 48870 | 4212860 | 1080
Co6,40,14 | 48165 | 4211690 | 1080 || Coe,40,30 | 48600 | 4214000 | 1080 || Coe,40,46 | 47970 | 4213220 | 540
Co6,40,15 | 48555 | 4206710 | 1080 || Coe,40,31 | 47775 | 4215230 | 540 Co6,40,47 | 47925 | 4215050 | 1080
Coe,40,16 | 48630 | 4205900 | 540 Cog,40,32 | 49815 | 4194350 | 1620
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Next we add the M; part, that is a Hermitian self-orthogonal [6,2,> 2] code over
the field G; = F4. One can easily compute all such codes up to equivalence. There
are exactly 4 inequivalent such codes with generator matrices

(&) 0 €1 0 0 O €1 0 (&) €1 €1 0
H == H =
3 < 0 e1z 0 e 0 O ) ’ 4 ( 0 e e xe; z2e; 0 ) ’

(e 0 e 0 0 O _[fer 0 0 e e e
HS_(O (&) 0 e e1 61)’ H6_<O €1 e1 0 (&) €1>'

We fix the generator matrices of the 47 codes and consider the matrices Hs, Hy, Hs, Hg
under compositions of the following transformations: 1) a permutation 7 € Sg of the
15-cycle coordinates; 2) multiplication of each of the 6 columns by a nonzero element
of Gyp; 3) automorphism of the field (z — 22). Thus we construct binary [96, 44]
codes. Our computations show that none of these codes has minimum distance
d > 20.

=6) Now we add the M; part, which is a Hermitian quaternary self-dual code of length
6 over the field G1 = Fy. There are two inequivalent codes of this length - 73 with
minimum weight 2 and hg with minimum weight 4 (see [10]). All 675 inequivalent
[90, 36, 20] codes combined with the binary images of the different copies to both
quaternary self-dual codes give binary self-orthogonal [90,42, < 16] codes.

This proves Theorem 1 which states that a binary doubly-even [96, 48, 20] self-dual
code with an automorphism of order 15 does not exist.

4 On the automorphism of type 3-(28,12)

In this section we fill a gap in the literature caused by a missing proof on the nonexistence
of an extremal self-dual code of length 96 having an automorphism of type 3-(28,12). In
paper [2], the authors used this assertion in their proof of the main theorem.

Proposition 8 A binary doubly-even (96,48, 20| self-dual code with an automorphism of
type 3-(28,12) does not exist.

Proof: Suppose that C' is a self-dual [96, 48, 20] code and o is an automorphism of C' of
type 3-(28,12). Then C; is a self-dual [40, 20, 8] code. Without loss of generality, we can
take the last 12 coordinates for the fixed points. So C has a generator matrix of the form

(3 2)

where A is an 8 x 28 matrix which generates a doubly-even [28,8,> 8] code A with
dual distance dj > 3. Using the MacWilliams equalities we see that the possible weight
distribution for this code is

Waly) =14 Ay® 4 (142 — 3X — )y + (95 + 3\ + 3p)y™0 + (18 — A — 31)9%° + py??,
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and the number of codewords of weight 3 in its dual code is v = 2\ — 2u — 4.
Let us consider the partitioned weight enumerator A;; for the code U, where 0 <14 <
28 and 0 < j < 12. We use the following restrictions:

o If 3i+j # 0 (mod 4) then A;; = 0.

o If0<i+j<8or32<i+j <40 then A;; =0.

o If0<3i+j<20o0r 76 < 3i+j <96 then A;; = 0.

e Ajp = «a;, where {a;,i=0,...,28} is the weight distrubution of A.
o Ajj=Ass i124,i=0,...,28 j=0,...,12.

According to the MacWilliams identities for coordinate partitions (see [11]) and the
above restrictions, we obtain the following system of linear equations

28 12 28 12
2040 =Y ) Ku(:28)K0(j; 12)Ai s 20401 =) Y Kal(6:28)K1(j; 12) A
i=0 j=0 i=0 j=0

28 12 28 12
= 204,00 =) ) K(5:28)Ai;; 2040 = K(i;28)(12 — 2) Ay

=0 5=0 i=0 j=0
28 12 28 12
= 204,0 =) ) Ka(:28)4;5  2%0(124,0 — As1) =2 Y KL(1:28) Ay
=0 =0 i=0 j=0
Solving this system with respect to 25 of the unknowns, using Computer Algebra Sys-
tem Maple, we obtain A\ = —1, a contradiction. O
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